
1

Congestion Policing Queues - A New Approach To
Managing Bandwidth Sharing At Bottlenecks

David P. Wagner
Institute of Communication Networks and Computer Engineering, University of Stuttgart, Germany

Abstract—Managing bandwidth sharing at bottlenecks is a
challenge as old as packet switched networks. When equal
senders compete for bandwidth of a bottleneck, it is desirable
not only to enforce an instantaneous sharing of the scarce
resource but also to prevent permanently active customers from
suppressing less active customers. Moreover, it is desirable to
incentivize shifting load to non-congested networks or times. To-
day there is no cheap, efficient and effective mechanism available
to achieve these goals. It has been argued that policing based
on congestion as perceived by the transport layer can achieve
these goals. In this paper we present the concept of Congestion
Policing Queues (CPQ), based on a very lightweight dequeuing
and scheduling because all customers share one queue. CPQs
can police congestion if deployed at bottlenecks relevant to the
customers’ traffic. We developed three base policers that differ
in the level of integration with the Active Queue Management
(AQM) of the shared queue. By simulations of three scenarios
we evaluate the robustness of the achieved resource sharing
and performance in partial deployments for multi-bottleneck
situations.

I. MOTIVATION

Network operators aim to satisfy the requirements of as
many customers as possible. Since any information about
requirements retrieved from the customers is prone to be
selfish, the best option is enforcing equal sharing between
all (active) customers (for each class of service) when and
where resources are scarce, i.e. at bottlenecks. Therefore, today
many operators design their networks in order to pinpoint the
bandwidth bottleneck to certain nodes, e.g. the Broadband
Network Gateway (BNG), and deploy technologies such as
Deficit Round Robin (DRR) [13] on these nodes. By that,
instantaneous equal bandwidth sharing is achieved, i.e. all
N active customers obtain 1

N of the total bandwidth. Often,
such schedulers are configured hierarchically, e.g. per ser-
vice class, [7] and partly use classification based on Deep
Packet Inspection (DPI). But this approach has substantial
disadvantages. Managing one one queue per service class per
customer and having the scheduler operating on that many
queues is expensive. These mechanisms also ignore time: if
a customer has been inactive for a long time, one would
suggest this customer should get precedence over permanently
active customers for some time. Moreover, such system do
not incentivize distributing resource usage both in time and
regarding resources, which would be desirable.

Policing each customer’s congestion at the customer’s point
of attachment conceptually avoids these shortcomings [9]. Un-
fortunately, complete information about the congestion caused
by a customer’s traffic is not available to today’s network

operators. Nevertheless, for many transmissions the relevant
bottleneck lies within their Internet Service Provider (ISP)’s
network and not at peering points, as e.g. the broadband
reports of public agencies such as the Federal Communications
Commission (FCC) indirectly show.

In this paper we present the concept of Congestion Policing
Queues (CPQs). It aims to contain the congestion any single
customer creates by a per-customer policing based on locally
acquired congestion information. It eliminates the need for
complex hierarchical queuing and scheduling but allows using
a single shared queue for all customers. The concept of CPQs
works in scenarios where traffic passes one or more bottle-
necks. Therefore, CPQs will be beneficial in particular to cope
with varying bottlenecks in the aggregation networks which
could become commonplace at peak hours with future high-
speed access links, e.g. Passive Optical Networks (PONs).

This paper is structured as follows: Section II gives an
overview of related work. Section III presents three bottleneck
congestion policing mechanisms, that are evaluated in Section
V. The paper closes with conclusions and an outlook in
Section VI.

II. RELATED WORK

CPQs aim to enforce a certain resource sharing among an
unknown and changing number of customers. Therefore, we
shortly describe not only congestion policing but also other
queue management and scheduling concepts.

Congestion policing assumes that congestion is the cost that
one customer can inflict on other customers and therefore
should be limited [11]. This accepted congestion rate may be
a just an internal technical policy of the network operator or
may also be explicitly contracted with the customers.

A. ConEx Policing

Congestion Exposure (ConEx) [1] is a technical protocol
proposal being developed by the IETF to make congestion
measurable on the path of a flow. The basic concept is that
senders actively expose the congestion they detect to the
network by in-band signaling. It depends on the receiver of the
flow relaying information about experienced congestion back
to the sender as is the case for Transmission Control Protocol
(TCP). ConEx only concerns congestion visible as packet loss
or Explicit Congestion Notification (ECN) markings. ConEx is
also intended for congestion policing [4] and some simulations
are documented [14]. Today there exists no final protocol
standard and consequently there is no deployment.

978-3-901882-48-7 c© 2012 IFIP

2

state information

state information

...

policers queueclassifier

Fig. 1: Generic overview of a Congestion Policing Queue

B. Queue management targeting Fairness

Several Active Queue Management (AQM) mechanisms
have been developed that target fairness, many targeting spe-
cial deployment environments. The most prominent generic
AQM targeting fairness is Fair Queuing (FQ) [6], which is also
used combined with specific AQMs for the sub-queues, such as
FQ-CoDel (using Controlled Delay (CoDel) [12]). FQ always
enforces per-flow fairness and has no notion of customers. So
these algorithms actually aim for a different goal.

If per-customer equal sharing shall be achieved, ISPs often
explicitly configure classification and rate-limited queues and
DRR scheduling on central network nodes so that these
become the only bottleneck. This approach reliably achieves
robustness against differing aggressiveness of customers, but
does not take into account the varying activity of customers.
Such system also cannot provide incentives for shifting traffic
to less congested networks or times: Even if a customer delib-
erately sends less aggressive, e.g. by using so-called scavenger
protocols as Microsoft Windows does for its updates, such
configuration will still allocate the configured bandwidth.

III. BOTTLENECK CONGESTION POLICING

A. Generic Structure of a Congestion Policing Queue

On a high level, an implementation of a CPQ consists of
three components as depicted in Figure 1:

• a classifier mapping incoming traffic to customers
• congestion policers for all customers filling this queue
• one queue, possibly with an AQM.

The per-customer congestion policers, are independent from
the classification mechanism as well as of the queue. Most
importantly it can be combined with any mechanism deployed
today, e.g. in BNGs, without modification.

B. Generic Structure of a Congestion Policer

On an abstract level, any congestion policer defines four
core functions: congestion allowance, congestion assessment,
allowance consumption and drop decision. By configuring the
congestion allowance the operator can adjust the resource
sharing in times of congestion between its customers according
to its policies, e.g. depending on the contract of the customers.
In contrast, the design of the other components define the be-
havior of a congestion policer, its performance and robustness.

We adopt the token bucket concept to translate the constant
money per time the customers pay to the instantaneous variable
congestion price [5], that Kelly proved would optimize the
global Internet [11]. So the central element of a congestion
policer are one or more congestion token buckets as depicted
in Figure 2. They have also been used by others ([5] [14]) for

Drop Decision
i.e. Drop Probability

Function

Token
Bucket(s)

Congestion
Assessment

based on
queue data

packet not contributing to congestion

packet contributing to congestion

flow of packets

flow of information

Shared
Queue

i.e. Fill
Rate

i.e. Drain
Function

Congestion
Allowance

Allowance
Consumption

Congestion Policer for one client

Fig. 2: A Congestion Policer of a CPQ for one customer

congestion policing. The token buckets have a specified size,
are filled with a certain rate and are drained only for packets
contributing to congestion. The fill rate defines the tolerated
sustained congestion rate of that customer.

1) Congestion Allowance: The size(s) and the fill rate(s) of
the token bucket(s) are configured by the ISP. We only use
one bucket since we examine basic properties of CPQs.

2) Congestion Assessment: Essentially, this function as-
sesses if and how much a packet contributes to congestion.
This can be realized very differently: one option is to count
dropped / marked packets (similar to the input ConEx would
provide), others assign a real number between zero and one
for every packet. In any case the policer’s understanding of
congestion should correspond to the signals the queue provides
to the sender to create the desired incentives to shift traffic to
less congested paths or times.

3) Allowance Consumption: If a customer’s packet con-
tributes to congestion, the customer’s congestion credit
in the token bucket is reduced by size(packet) ∗
congestion contribution(packet). If packet drops are not
the only source of congestion information, a difficult question
is if packets dropped by the AQM should be accounted for: It
can be argued that a packet drop is a clear sign for congestion
so tokens should be consumed. Nevertheless, dropped packets
do not contribute to congestion just because they are dropped
and not transmitted, so it makes sense not to drain tokens.

4) Drop Decision: The drop decision is a drop probability
function that maps the bucket fills to a drop probability
and forwards or drops packets accordingly. It may depend
on conditions, e.g. so that packets are dropped only during
congestion periods.

IV. LOCAL CONGESTION POLICING ALGORITHMS

We implemented seven different policing algorithms which
we classified into three types, depending on the level of
integration with the accompanying AQM.

A. Independent Congestion Policing

Independent Congestion Policing (ICP) algorithms are in-
dependent of the queue’s state and just receive information

3

Drops

QueuePolicing

Drops

Fig. 3: Control flow between policer and AQM for ICP

available tokensdr
op

 p
ro

ba
bi

lit
y

0

1

0 100 %threshold

step function

partwise linear function (slope)
partwise square function (squared)

Fig. 4: Forwarding decision functions implemented for ICP

on packet drops or ECN marks. So they only use congestion
signals that are also visible to the receiver, resembling the
input ConEx provides. While ConEx covers the whole path
(with one Round Trip Time (RTT) delay), a CPQ can only
use the drops / marks at the local queue. Figure 3 shows the
general concept.

Due to lack of context information, any dropped or marked
packet consumes tokens corresponding to its size. Since [14]
showed that the step function is a suboptimal choice for ConEx
policing we implemented and evaluated three drop probability
functions depicted Figure 4: a step function, a piecewise
linear and a piecewise square function. The step function
is expected to result in on-off behavior for too aggressive
customers: Once the bucket fill level has fallen too low, all
packets requiring more tokens will be dropped. Since packets
of bigger transmissions in today’s Internet are all of similar
size (∼1500 Bytes), the policer will resume forwarding packets
once the bucket has a sufficient fill level. If the customer will
continue causing too much congestion, this process will repeat.

ICP is attractive since the policer can be implemented as
independent device. If existing routers’ firmware could be
altered so that the AQM does not drop packets but forwards
them to the policer, subsequent deployment is possible for ICP.

B. AQM-Fed Congestion Policing

AQMs such as Random Early Detection (RED) [8] have
been introduced in order to avoid global synchronization of
TCP flows, RED being the only AQM that is widely available
in deployed equipment. RED drops packets based on a drop
probability depending on the moving average of the queue
size q̃. The drop probability function is zero for q̃ smaller
than a minimum threshold min thresh and then increases
linearly to a maximum probability max p at a maximum
threshold max thresh. It equals one for greater q̃. So RED
as probabilistic AQM assigns a drop probability drop prob
to each incoming packet, which can be interpreted as the
congestion currently perceived by the queue.

The basic idea of AQM-Fed Congestion Policing (AFCP)
[3] by Briscoe is to use the drop probability of an AQM instead
of the actual drops or markings, in particular also for packets

Policing

Drops

AQM Queue

Drop Probability pQ

Drops

Fig. 5: Control flow between policer and AQM in AFCP

Policing

Drops

AQM Queue

Drop Probability pQ

Fig. 6: Control flow between policer and AQM in AICP

that are not dropped. Figure 5 abstractly shows the flow of in-
formation between the AQM and a selected customer’s policer.
We designed AFCP to adopt that understanding of congestion
of the accompanying AQM without modification for both the
allowance consumption and the forwarding condition: Any
incoming packet will only be forwarded to the queue if there
are still enough tokens available, i.e. its size scaled by the
AQM’s current drop probability:

drain = size(pkt) ∗AQM.drop prob

and any forwarded packet will consume drain tokens. We
investigated two variants of this drain algorithm according to
the two views on dropped packets discussed in III-B3: AFCP-
a drains tokens for every packet let pass by the CPQ, while
AFCP-b does not drain tokens for packets that pass the policer
but are dropped by the AQM.

In order to access to the AQM state, AFCP requires inte-
grating the policing function with the AQM in one device
and efficient implementation of calculations with the drop
probability.

C. AQM-Integrated Congestion Policing

Since AFCP does not alter the AQM itself, even customers
who don’t use more than their fair share will stochastically get
congestion signals. The goal of AQM-Integrated Congestion
Policing (AICP) is that customers with a full bucket have
a much lower drop probability than customers who mostly
consume their allowance rate, i.e. have almost empty buckets.
As Figure 6 shows, for AICP there are no independent AQM
drops. The drop decision is defined by the policer for the
customer accountable for that packet, taking into account
both the queue state and the state of the policer. There is
further research needed on how to trade off prioritization of
customers, link utilization and queuing delay. We developed
and implemented two basic variants.

AICP-a is based on shifting the slope of the RED drop prob-
ability function depending on the fill level of the customer’s
token bucket. Therefore the drop probability for a packet of

4

a specific customer is computed by the RED algorithm, but
both thresholds used by the RED algorithm are shifted by the
fill ratio of the token bucket, e.g. for min thresh:

min thresh = AQM.min thresh ∗ (1 + current fill

bucket size
)

Because this variant uses in average larger thresholds, in
particular after idle times, it tends to allow larger queues and
queuing delays, which might be not acceptable for some use
cases.

AICP-b does not touch the thresholds but manipulates the
drop probability. We decided to inlcude the RED’s drop
probability red prob but to reduce its influence by squaring
it. On top, we add a drop probability p prob depending on
the fill of the token bucket:

drop prob(cstmr) = red prob ∗ red prob+ p prob(cstmr)

In our implementation we chose p drop prob as slope
linearly increasing from zero at a threshold bucket fill
p ratio thresh (we use 0.25) to a maximum probability
p max (we use 0.5) for an empty bucket. So for customers
having more than 75% of their tokens consumed, the drop
probability is derived as

p prob(cstmr) = p max ∗ (1− fillRatio(cstmr)

p ratio thresh
)

V. SIMULATIVE EVALUTAION

We use IKR SimLib [2], an event-driven simulation frame-
work, which allows integrating latest operating system kernels
using full virtualization approach [15]. This allows using TCP
congestion control of real deployed operating systems. We
choose to use Linux version 3.10.9 and TCP cubic since
many senders in the Internet are Linux machines and cubic
is the default congestion control since end of 2006. All
simulations ran for 5020 seconds, divided into 20 seconds
startup phase (ignored in statistical evaluation) and ten 500
second measurement intervals.

A. Overview

The selected three scenarios aim to cover the crucial
challenges for CPQs: robustness of resource sharing and
deployability. More precisely, we examine the resource shar-
ing when facing differing aggressiveness of the customers’
congestion control or differing activity patterns of the cus-
tomers in a single-bottleneck scenario as typical for today.
Furthermore, we examine the effect of partial deployment
in multi-bottleneck scenarios. A lightweight, well-performing
capacity sharing mechanism would allow ISPs to limit their
investments in aggregation networks. So we evaluate three
scenarios: aggressiveness scenario, activity scenario and mixed
deployment scenario.

In all three scenarios, we model the extreme case where just
two customers compete for the scarce bottleneck bandwidth.
For all scenarios, we use the seven different Policing and
AQM mechanisms presented in IV. After some calibration
experiments, we decided to use the set of congestion allowance
configurations shown in Table I for all experiments. Since we

TABLE I: Token bucket configuration used in the simulations

ICP AFCP AICP
Bucket size [Bytes] 350000 225000 225000

Token fill rate [Bytes/s] 550 300 300

link
bw = 10MBit/s
delay = 50ms

senders receivercongestion-policing
queue

rate meter

Sender 1

Sender 2

Fig. 7: Simulation topology used in the Aggressiveness and
Activity Scenario

target to capture a stable state for the persistently sending
customers, the bucket sizes are chosen rather small to reach
a stable state fast. The bucket fill rate has to be aligned to
the way the algorithm accounts congestion to a customer,
so we identified one parameter for drop-based and one for
probability-based algorithms.

B. Aggressiveness Scenario

We evaluated the robustness regarding aggressive senders
using the scenario depicted in Figure 7. Sender 1 uses 5
concurrent TCP cubic flows that have data available at any
time (greedy flows), while sender 2 just uses one greedy flow.
In average, agnostic queues, drop tail as well as RED, would
result in a per-flow fair resource sharing, i.e. the sender 1
would acquire five times the bandwidth of sender 2.

1) Observations: As expected, the heavy allowance ex-
ceedance results for all three ICP variants in on-off behavior,
as visible in Figure 8a showing a trace for ICP using a slope
drop probability. The policing drops occur in bursts, followed
by a time without policing. During significant times the link
is by far not fully utilized. For AFCP-a, shown in Figure 8b,
the policing drops are also clustered, but the distance between
clusters is bigger. The bandwidth sharing seems much more
equal than five to one, the utilization of the bottleneck is high.
In Figure 8c the effects of AICP shifting the regulation of
bottleneck access from the AQM to the policer are obvious:
The frequency of policing drops in Figure 8b is remarkably
higher compared to AFCP.

2) Statistical evaluation: For the Aggressiveness Scenario,
the important metrics are Jain’s fairness index [10] and the
bottleneck link utilization, given in Table II. All algorithms
achieve higher fairness than a RED queue, but without the
effort of managing several queues as for DRR. The achieved
bottleneck utilization for ICP is not acceptable. ICP may only
be useful if the purpose is deterring customers from overly
causing congestion rather than policing traffic.

TABLE II: Results for aggressiveness scenario

Reference ICP AFCP AICP
RED DRR Step Slope Sqrd a b a b

Jain’s
Fairness 0.575 1.0 0.996 0.990 0.997 1.0 0.951 0.994 0.999

Bottleneck
Utilization 1.0 1.0 0.790 0.783 0.785 0.999 1.0 1.0 1.0

5

50 60 70 80 90 100 110
time [s]

0

2

4

6

8

10

12
ba

nd
w

id
th

 [M
Bi

t/s
]

throughput sum
throughput sender1
throughput sender2
policing drops sender1
policing drops sender2

(a) Trace for using ICP with a slope drop probability function

50 100 150 200 250 300 350 400
time [s]

0

2

4

6

8

10

12

ba
nd

w
id

th
 [M

Bi
t/s

]

(b) Trace for using AFCP-a

50 100 150 200 250 300 350 400
time [s]

0

2

4

6

8

10

12

ba
nd

w
id

th
 [M

Bi
t/s

]

(c) Trace for using AICP-a

Fig. 8: Traces for aggressiveness scenario

C. Activity Scenario

In this scenario we use the same topology shown in Figure
7 and customer 1 maintains one permanent greedy TCP
connection In contrast, the customer 2 just has sporadic and
short transmissions, which follow a statistical distribution
both in length and inter arrival times. We chose a normal
distribution (mean = 50 s, standard deviation = 5) for the inter
arrival times and a binomial distribution for the transmission
length (mean = 2 E6 and variance = 5 E5). The key metric is
the mean finish time of the short transmissions, although the
bottleneck utilization should be high as well.

Table III summarizes the statistical results for the activity
scenario. Regarding finish times only the mean is of statis-
tical relevance, nevertheless we chose to include minimum
and maximum values to indicate the spread of results. The
variants of ICP achieve the fastest finish times for the sporadic
transmissions. This benefit is only possible because the link
is temporarily empty, i.e. it is paid for by a very low link
utilization. The results for AFCP show a small advantage
for variant a, but no fundamental differences. Whereas the
results for AICP show a big difference between the two
variants. AICP-a achieves reliably low average finish times.
Variant b performs much worse, showing about 50% longer
finish times in average. This can be explained by AICP-a
reducing the drop thresholds for the permanent customer and
by that leaving space in the queue for customers becoming
active. Nevertheless, this approach is disputable since with our

TABLE III: Results for Activity Scenario

ICP AFCP-a AFCP-b AICP-a AICP-b
Step Slope Squared

Fi
ni

sh
Ti

m
es Min 2.05 02.05 2.05 2.73 2.71 2.65 3.12

Mean 3.99 3.92 3.61 5.29 5.35 4.42 6.45
Max 8.10 7.17 8.19 8.07 8.78 4.82 14.14

Bottleneck
Utilization 0.729 0.710 0.723 0.992 0.991 0.987 0.990

sender0 receiver0

sender0 Linux VM with denoted role

Key:

sender1

receiver1

10ms

40m
s

sender2

receiver2

10ms
40m

s

sender3

receiver3

10ms

40m
s

sender4

receiver4

10ms

40m
s

#1 #2 #3 #4

RED- or Congestion Policing Queue,
depending on Scenario

10 MBit/s Link with denoted delay10ms

Fig. 9: Topology used in Mixed Deployment Scenarios

configuration it increases thresholds for customers with full
buckets, thus resulting in bigger queue size and larger queuing
delays. The balance between the three metrics, utilization,
precedence for newly active customers and low delay requires
more research.

D. Mixed Deployment Scenarios

We consider a greedy flow of customer 0 that passes four
congested links in the topology depicted in Figure 9. The
competing flows only pass one bottleneck, but link delays are
defined as depicted in Figure 9 so all connections experience
a similar RTT. By this, we limit the impact of the inherent
RTT-unfairness of current TCP congestion controls. In this
scenario, various sub-sets of queues are configured as CPQs,
whereas the remaining queues are configured as RED queues.

This experiment targets to prove that even if there are
more than one bottleneck on a path and CPQs are partially
deployed, there is benefit and robustness to expect. Therefore,
we compared the results with a deployment of RED queues
only and looked on bottleneck utilization and fairness between
flows passing a different number of bottlenecks. In Table IV
the exact results are given.

We evaluated the average utilization of the four links shared
by two flows each (the horizontal links in Figure 9), see Table
IVa. ICP results in significant bottleneck bandwidth being not
used, so wasting scarce resources, AFCP and AICP result in
almost full utilization (≥ 99.5%).

Most interestingly, we analyzed the resource sharing be-
tween traffic passing just one and traffic passing four queues
(i.e. flow 0 vs. the average of flows 1–4). All implemented
policing algorithms do improve fairness, but the degree de-
pends on the algorithm and the amount of deployed CPQs. If
there is just one CPQ deployed, the effect is much lower than
if three or all four queues are configured as CPQs. In these
cases, ICP policing results in higher fairness than AFCP (at
expense of wasting scarce resources, see above). In contrast,
AICP policing is able to achieve a Jain’s Fairness Index of
above 0.95 for both variants whenever there are at least three
of the four queues CPQs.

6

TABLE IV: Results for the Mixed Deployment Scenario

(a) Average utilization of bottleneck links

CPQs at ICP AFCP-a AFCP-b AICP-a AICP-b
bottlenecks Step Slope Squared

none 0.999
#1 0.953 0.949 0.949 0.999 0.999 0.998 0.998

#1 – #3 0.854 0.841 0.848 0.999 0.998 0.996 0.997
#3 0.954 0.947 0.952 0.999 0.999 0.999 0.998

#2 – #4 0.860 0.848 0.847 0.998 0.998 0.996 0.998
all 0.827 0.798 0.816 0.998 0.998 0.996 0.996

(b) Jain’s Fairness of the traffic passing one vs. the traffic passing four queues

CPQs at ICP AFCP-a AFCP-b AICP-a AICP-b
bottlenecks Step Slope Squared

none 0.693
#1 0.717 0.716 0.712 0.695 0.698 0.732 0.743

#1 – #3 0.762 0.771 0.767 0.703 0.705 0.942 0.952
#4 0.711 0.718 0.710 0.700 0.697 0.744 0.753

#2 – #4 0.760 0.767 0.766 0.709 0.718 0.953 0.953
all 0.795 0.820 0.817 0.719 0.717 0.978 0.991

This is a very interesting finding, since it shows that CPQs
using AICP are able to compensate the negative effect on
throughput when passing several bottlenecks without reducing
utilization. The AICP algorithm achieves this global effect by
just using local information, without any signaling.

E. Discussion

All ICP algorithms fail to utilize the scarce resource for
many conditions. Our findings show that there are much
better options if the AQM’s information can be accessed. We
therefore deem ICP not suitable for deployment.

Regarding AFCP the results show advantages for AFCP-
a, which drains tokens for dropped packets. AFCP-a is very
well able to enforce equal sharing independent from the
aggressiveness of the senders, comparable to DRR. Moreover,
in average AFCP-a reduces finish times for sporadic senders,
however not as much as AICP. AFCP does not change the
tendency to put flows which pass several congested queues at
a disadvantage. This can be an advantage or an disadvantage,
depending on the goals of the network operator.

With AICP policers, the number of traversed bottlenecks
is much less important than with other policers or even
without policing. This allows deliberate routing through sev-
eral bottlenecks while not putting the respective customers
at a disadvantage. This might be an important benefit if
aggregation networks need to be operated at their capacity
limit at peak hours and in consequence many links become
bottlenecks from time to time.

VI. CONCLUSION

In this paper we presented the concept of a Congestion
Policing Queue, an element combining queuing and per-
customer congestion policing. We analyzed the general struc-
ture of the policing element and designed algorithms that we
differentiated to three classes:

• ICP which is independent of the queue and its AQM
• AFCP which uses state information of the AQM

• AICP which integrates the AQM / supersedes the AQM.
We evaluated CPQ with these policer algorithms in simulations
using real Linux TCP cubic traffic regarding robustness against
differing aggressiveness of the customers’ congestion control
and differing activity patterns. Furthermore, we evaluated the
effects of mixed deployments. Our results show that AFCP
and AICP policers achieve high utilization and mostly also
the desired bandwidth sharing at the bottleneck. Moreover,
AICP policers are able to compensate the negative effect on
throughput when passing several bottlenecks without reducing
utilization.

Summarizing, CPQs can enforce equal resource sharing as
DRR would, but significantly improve congestion fairness for
the customers and at the same time increase the operator’s
flexibility in operation. Although further research in algorithms
is needed, our results indicate that any good policer algorithm
for CPQs will be fed by or integrated with the AQM.

VII. ACKNOWLEDGEMENTS

The foundation of this work is the idea of Bob Briscoe who
pointed out that congestion policing can be performed on local
congestion information at a bottleneck.

This work has been funded by the German Federal Ministry
of Education and Research (BMBF) in the SASER project
(grant identifier 16BP12202).

REFERENCES

[1] Congestion exposure (conex). http://datatracker.ietf.org/wg/conex/, April
2014. retrieved at 2014-05-14.

[2] Ikr simulation and emulation library. http://www.ikr.uni-stuttgart.de/
Content/IKRSimLib/, April 2014. retrieved at 2014-05-14.

[3] B. Briscoe. nice traffic management without new protocols. http://www.
bobbriscoe.net/presents/1210isoc/1210isoc-briscoe.pdf, October 2012.
retrieved at 2014-05-14.

[4] B. Briscoe. Network Performance Isolation using Congestion Polic-
ing. Internet Draft draft-briscoe-conex-policing-01, Internet Engineering
Task Force, Aug. 2014. Work in progress.

[5] B. Briscoe et al. Policing congestion response in an internetwork using
re-feedback. Proc. ACM SIGCOMM 05, Computer Communication
Review, (TR-CXR9-2004-001):277–288, 2005.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a
fair queueing algorithm. SIGCOMM Comput. Commun. Rev., 19(4):1–
12, Aug. 1989.

[7] DSL Forum. Migration to ethernet-based DSL aggregation, 2006.
[8] S. Floyd and V. Jacobson. Random early detection gateways for conges-

tion avoidance. Networking, IEEE/ACM Transactions on, 1(4):397–413,
1993.

[9] A. Jacquet et al. Policing freedom to use the internet resource pool. In
Proceedings of the 2008 ACM CoNEXT Conference, pages 71:1–71:6,
New York, NY, USA, 2008. ACM.

[10] R. Jain et al. A quantitative measure of fairness and discrimination for
resource allocation in shared computer systems. CoRR, cs.NI/9809099,
1998.

[11] F. Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, 1997.

[12] K. Nichols and V. Jacobson. Controlling queue delay. Queue,
10(5):20:20–20:34, May 2012.

[13] M. Shreedhar and G. Varghese. Efficient fair queuing using deficit round-
robin. Networking, IEEE/ACM Transactions on, 4(3):375–385, Jun 1996.

[14] V. Singh (Editor) et al. Final report on resource control, including imple-
mentation report on prototype and evaluation of algorithms, December
2010.

[15] T. Werthmann et al. VMSimInt: a network simulation tool supporting
integration of arbitrary kernels and application. In SIMUTools ’14:
Proceedings of the 7th International ICST Conference on Simulation
Tools and Techniques. ACM, March 2014.

