
Universität Stuttgart
INSTITUT FÜR

KOMMUNIKATIONSNETZE
UND RECHNERSYSTEME

Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn

Copyright Notice

c©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47, 70569 Stuttgart, Germany
Phone: ++49-711-685-68026, Fax: ++49-711-685-67983

email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de



Scheduling Algorithms for Simultaneous Software
Updates of Electronic Devices in Vehicles

Jörg Sommer1, Volker Feil2, and Enrique Adeva Sanz2

1University of Stuttgart, Institute of Communication Networks and Computer Engineering (IKR)
Pfaffenwaldring 47, 70569 Stuttgart, Germany

Email: joerg.sommer@ikr.uni-stuttgart.de

2Daimler AG, Infotainment and Telematics
HPC 050/G021, 71059 Sindelfingen, Germany

Email: volker.feil@daimler.com

Abstract— Today’s upper-class passenger cars have various
interconnected electronic devices. Each device performs complex
functions, enabled by software that can be stored in a flash
memory. Of these, the devices in the multimedia and infotainment
domain contain by far the most software with a size in the order
of one Gbyte. In this domain, the devices are the performance
bottlenecks, not the communication systems. Throughout the
vehicle life cycle, parts of the software have to be frequently
updated during maintenance. Today, the software of the devicesis
updated in a consecutive manner. Due to performance bottlenecks
caused by the affected devices, the update can take a long time
that leads to high costs.

Therefore, the objective is to reduce the total update time by a
higher utilization of the common bus resource. In this paper, we
introduce and investigate algorithms that update the software
of multiple devices simultaneously and evaluate the efficiency
of these algorithms. We focus on scheduling algorithms on the
Application layer and the Logical Link Control (LLC) layer and
model the update process by means of Petri nets. Our studies
show that it is most promising to combine a simple scheduling
algorithm on the Application layer with Round Robin on the
LLC layer.

I. I NTRODUCTION

The number of interconnected electronic devices in today’s
upper-class passenger cars, also calledElectronic Control
Units, has tremendously increased to more than 70. Most of
the devices have an inner flash memory that stores software.
Nowadays, most innovations in automotive systems are di-
rectly or indirectly enabled by software [1].

The observational Moore’s law states that the number of
transistors that can be inexpensively placed on an integrated
circuit is increasing exponentially. As we notice this law is
also valid for sizes of flash memories. Therefore, the amount
of in-vehicle software stored in flash memories is increasing
exponentially, too.

Within a vehicle, the multimedia and infotainment domain
contains by far the most software. The actual software size de-
pends on the installed equipment. For instance, a full equipped
multimedia and infotainment domain including navigation map
data is of the order of one Gbyte.

During maintenance, often parts of the vehicular software
have to be updated. The large amount of data results in a

long maintenance time, which in turn leads to high costs.
For this reason, the software update time has to be reduced.
Especially in the multimedia and infotainment domain, it isa
challenge to update the software in an acceptable time. In this
paper, we analyze algorithms that reduce the update time by
simultaneous flash programming of several electronic devices
those are interconnected by an in-vehicle bus system. So far,
the updating of flash memories of several devices is done
consecutively.

The update software is transferred from a source to a target
device via networks that are mainly used for exchanging data
of normal operation. In many cases, the source software is
located on a device outside the car. For instance, during
maintenance this software is mainly located on a so-called
diagnostic testerin the workshop. It is also possible that the
software source is located closer to the target device. Particu-
larly in the multimedia and infotainment domain, this solution
is often applied due to the need to provide a high bandwidth
channel to the target devices. The current Mercedes-Benz
solution is to insert aCompact Disc(CD) that contains the
appropriate software into the CD player in the multimedia
and infotainment domain. All devices within this domain are
connected to this CD player via a high-bandwidth bus system
that is calledMedia Oriented Systems Transport(MOST).

Usually, the target devices are the performance bottlenecks
and not the bus system. The first reason for a target device’s
performance limitation is the slowness of receiving data from
the bus system. In the case of MOST, the performance of
the connection between theExtended Host Controller(EHC)
and theNetwork Interface Controller(NIC) depends generally
on the requirements for normal operation. For instance, if
a mobile phone interface device has to receive only control
commands likeDIAL NUMBER or INCOMING CALL, then
the receiver’s connection is realized cost-efficient. Therefore,
the connection is narrowband in spite of the used high
bandwidth bus system MOST. Anyway, the actual benefit is
the possibility to transmit the speech audio streams from the
mobile phone interface device to an audio amplifier via MOST.
Updating the software of the mobile phone interface device

IEEE Vehicular Networks and Applications Workshop, co-located with IEEE ICC 2008, 19-23 May 2008, Beijing, China 1



via the narrowband receiver connection leads certainly to a
low utilization of MOST, if there are no other additional data
exchange operations.

The second reason for the performance limitation of a target
device is the slowness of flash memory deletion and writing.
The writing rates of flash memories used in the multimedia and
infotainment domain are of the order of 500 kbps. However,
the maximum data rate of flash memories does not in general
limit the writing performance. By using flash memories in
parallel, the writing rates can be increased.

The basic motivation for updating multiple devices simulta-
neously instead of consecutively is to reduce the total update
time by a higher utilization of the common bus resource.
The remainder of this paper investigates algorithms that allow
simultaneous updating by scheduling partial activities ofsingle
software updates. The next section describes the relevant
technologies, protocols, and processes that are needed for
the software update. Section III presents the modeling of the
update process by means of Petri nets. In section IV the
relevant scheduling algorithms are explained and are evaluated
in section V. Finally, a conclusion and outlook is given in
section VI.

II. TECHNICAL BASES

Currently, the protocol stack shown in Figure 1 could be
used in passenger cars for updating software in the multimedia
and infotainment domain, e.g., in Mercedes-Benz cars. The
protocol stack comprises four major layers: MOST on the
Physical layer and theMedium Access Control(MAC) layer,
the MOST High Protocolon theLogical Link Control(LLC)
layer, and theUnified Diagnostic Services(UDS) on the Ap-
plication layer. Figure 1 shows the encapsulation of protocol
data units, too. In the following subsections, the featuresand
mechanisms of the used protocols are described in more detail.

A. MOST

Media Oriented Systems Transport(MOST) [2], defined in
1998 by a consortium of automobile manufactures and com-
ponent suppliers, is a serial communication system intended
for transmitting audio and video data, burst-like data, and
control data via, e.g., polymeric optical fibers. Particularly
in passenger cars, MOST is used to realize multimedia and
infotainment systems composed of, e.g., a CD-/DVD-player,
a TV receiver, a navigation system, a mobile phone interface
device, an iPod interface device, and an audio amplifier in
a modular manner. MOST supports three types of chan-
nels: synchronous, asynchronous, and control channel. The
synchronous channel is used for transferring time-sensitive
streaming data. The asynchronous channel is mainly used
for transporting burst data traffic (e.g., caused by Internet
applications). It can be used for the software update, too.
The control channel is used for exchanging control messages
with low bandwidth requirements. A MOST system has a
timing master that generates frames. The frame rate is usually
44.1 kHz. Per frame, 64 bytes are subdivided into the three
channels synchronous channel, asynchronous channel, control

channel, and administrative tasks. Therefore, MOST has a
data rate equal to44.1 kHz ∗ 64 ∗ 8 bit ≈ 22.6 Mbps.
However, the asynchronous channel can use in maximum
36 bytes per frame. The corresponding data rate is equal to
44.1 kHz ∗ 36 ∗ 8 bit ≈ 12.7 Mbps.

The presented MOST is a widespread, well-established
multimedia networking technology. Currently, there are efforts
to double (or even to increase by factor six) the bandwidth
by introducing appropriate technology extensions. A more
detailed description about MOST can be found in [2], [3].

B. MOST High Protocol

The MOST High Protocol (MHP) [4] is a reliable commu-
nication protocol. In general, MHP is applied for updating the
software via an asynchronous channel. At first, a connection
between sender and receiver has to be established. Afterwards,
the sender can transmit MHP packets to the receiver. Either
single MHP packets or blocks that consist of multiple MHP
packets are acknowledged after their reception. Therefore,
the receiver transmits an acknowledge packet to the sender.
Finally, the connection has to be released. The maximum
length of a packet transmitted over the asynchronous channel
is 1024 bytes. For transferring software update data only 1006
bytes can be used for the payload. The protocol information
contained in the header and trailer has always a length of 18
bytes. The transmission of a MHP packet that has a length of
1024 bytes needs⌈1024/36⌉ = 29 MOST frames. Therefore,
the data rate for the payload decreases to(44.1/29 kHz) ∗
1006 ∗ 8 bit ≈ 12.2 Mbps.

Furthermore, the data rate degrades due to MOST’s arbi-
tration mechanism. A sender has to wait at least four MOST
frames before sending a packet again. Therefore, the nominal
data rate is equal to(44.1/(29 + 4) kHz) ∗ 1006 ∗ 8 bit ≈
10.8 Mbps.

The MHP connection handling does not influence this nom-
inal data rate if the connection is established for an appropriate
long time.

C. Unified Diagnostic Services

Unified Diagnostic Services(UDS) has been standardized
by the ISO [5]. This standard defines diagnostic services for
road vehicles including passenger cars. UDS is a protocol on
the Application layer.

A target device inside a vehicle can offer these services,
and a diagnostic tester, e.g., in the workshop, can call these
services. A service call is realized by a service request
message sent from diagnostic tester to a target device. After
service execution, the target device has to respond with a
service response message. UDS defines this diagnostic service
request/response protocol as well as a diagnostic servicesset.

For software updates the target devices generally have to
offer a so-calledTransfer Data Service. By this service, the
software update data can be transferred to the target device.
Each update software is segmented, and each segment is sent
in the payload of aTransfer Data Requestmessage. After
receipt of this message, the target device writes the segment

IEEE Vehicular Networks and Applications Workshop, co-located with IEEE ICC 2008, 19-23 May 2008, Beijing, China 2



Header Payload

Update Software

UDS Request Header Payload

MHP Packet

4 MOST Frames
Arbitration Pause

MOST Frame

Frame = 512 Bit (64 Byte) = 22.67 ms @ 44.1 kHz Frame Rate

Application

LLC

MAC

Physical

D
a

ta
 L

in
k

MOST (e.g.) Polymeric Optical Fiber (POF)

ISO/OSI
Layers

Synchronous Channel Asynchronous Channel Control
Channel

Fig. 1. Protocol stack and encapsulation of protocol data units for software updates of electronic devices.

into the flash memory, and informs the tester about the success
of this operation by transmitting aTransfer Data Response
message. The UDS protocol can use the transport services
of MHP (see Figure 1). For this reason, a UDS message is
segmented in several MHP packets and transferred as one
MHP block.

D. Memory Types of a Device

Basically, an in-vehicle electronic device has different types
of memory: There is volatileRandom Access Memory(RAM)
andRead Only Memory(ROM). Software stored in the ROM
can never be updated throughout the whole life time cycle
of a car. In theElectrically Erasable Programmable ROM
(EEPROM) altering data (e.g. error messages) is stored. Soft-
ware stored in theflash memoryis persistent, too. In case
of EEPROM and flash memory a new memory programming
throughout the life time cycle of a car is possible.

E. Update Process

The software update of a single device can be divided in
three major phases: (1)Pre-Update phase, (2) Actual-Update
phase, and (3) Post-Update phase. During the Pre-Update
phase, a new diagnostic session is initiated by a diagnostic
tester. Afterwards, the device’s hardware version and the
actual installed software version are detected. Furthermore, the
target device switches from normal operation mode into the
memory-programming mode and the diagnostic tester has to
authenticate itself to the target device.

During the Actual-Update phase, the target device receives
consecutive software segments and writes them into its flash
memory. A segment is transferred to the device by at least one
Transfer Data Request. Therefore, there is usually the need
to segment the update software. At first, a device receives
packets of a segment and stores them in the RAM. After
having completely received the segment, it is written from
RAM into the flash memory in one step. Thus, the segment
size is limited by the RAM size of the device.

During the Post-Update phase, the device validates the
updated software and its history. Finally, the device switches
back to the normal operation mode.

The total update time is significantly affected by the dura-
tion of the Actual-Update phase. The Pre-Update phase and
Post-Update phase are negligible. Therefore, we analyze only
the period of the Actual-Update phase activities.

III. M ODELING SOFTWARE UPDATES

We use colored Petri nets in order to model the concurrency
and synchronization of the software update activities. As a
result of the modeling, an evaluation of the efficiency of
several algorithms that schedule these activities is possible.

A. Model on the Application Layer

As shown in Figure 2 the model is divided into three
parts: theDispatcher, the Bus, and theDevice. A dispatcher,
modeled by the transitiontDispatcher, can be implemented in
a diagnostic tester. It transmits segments to the target devices.

The transition tDispatcher fires when every input place
contains at least one token of the same color or an uncolored
token. Each color corresponds to an appropriate target device.
The firing models the actual transmission of a segment in the
payload of a Transfer Data Request. The segments that are still
to be sent are represented by the colored tokens located on the
placePool. The number of segments (number of tokens) for
devicei (color i) is θSeg,i = ⌈sSW,i/sSeg,i⌉, wheresSW,i is the
software size andsSeg,i the segment size.1 Every firing leads
to a removal of the appropriate colored token on the place
Pool.

The placeSchedulerepresents the schedule. The tokens in
this place stand for the segments that are allowed to be sent
next according to the scheduling algorithm. After every firing,
the next set of tokens for the placeScheduleis computed.
The tokens in the placeReadyToReceivesymbolize by their
color the devices that are ready to receive. As described in
the previous section, a device is only ready for receiving a
segment, if it is not busy because it is writing another segment
into its flash memory.

As described in section II-C a diagnostic response actually
informs the dispatcher about the readiness for receiving the

1We do not consider cuttings due to the segmentation of the software for
devicei into segments. For our analysis cuttings are negligible.

IEEE Vehicular Networks and Applications Workshop, co-located with IEEE ICC 2008, 19-23 May 2008, Beijing, China 3



Bus
Busy

Bus
Idle

 Pool

tDevice

 tBus

tDispatcher

Schedule

Device
Buffer

Bus

Device

Dispatcher

ReadyTo
Receive

Fig. 2. Petri net of the update activities on the Applicationlayer.

next diagnostic request. In our model, this behavior is repre-
sented by the migration of a token from placeDeviceBuffer
to the placeReadyToReceive. Therefore, the model does not
provide additional bus occupancy by a diagnostic response.
This is right because actually the response can be transmitted
via the control channel. In this case, no resources of the
asynchronous channel are occupied. The time impact of a
response can be considered by the transitiontDevice.

Finally, a segment can only be transmitted if the bus is
idle. For this purpose, the placeBusIdlecontains an uncolored
token.

The bus is modeled by the two placesBusBusyandBusIdle
and the timed transitiontBus. The firing of this transition
models the bus occupancy during a transmission of a segment.
The delay of the transition depends on the data rate of the
MOST bus, the device’s receiving time of a segment, the
segment size, and the sizes of the MHP packets.

By firing tBus an uncolored token is generated on place
BusIdle. Furthermore, the colored token on the placeBusBusy
that stands for a segment migrates to the placeDeviceBuffer.
There, this token represents the existence of a segment in the
RAM of a device that corresponds to its color. If there is
a token in the input placeDeviceBufferthe timed transition
tDevice fires. This means that the segment is written into the
flash memory.2 After firing, the token migrates to the place
ReadyToReceive.

As mentioned before a Transfer Data Request is transferred
as one MHP block. Note that the model already considers the
acknowledgment of the MHP block by a properly later firing
of the transitiontBus.

2In this paper writing a segment into the flash memory includes a previous
deletion of the corresponding space of the flash memory.

Bus
Busy

Bus
Idle

 Pool

 tBus

tDispatcher

Schedule

Receiving
Buffer

Bus

Device

Dispatcher

ReadyTo
Receive

Writing
Buffer

tRec

tWrite

Fig. 3. Refined Petri net of the update activities on the LLC layer.

B. Model on the LLC Layer

To take into account algorithms for scheduling MHP packets
on the LLC layer, too, we have extended the previous model as
shown in Figure 3. In this model, the tokens in the placePool
now represent MHP packets instead of software segments. The
number of MHP packets (number of tokens) for devicei (color
i) is θPacket,i = ⌈sSeg,i/sPacket⌉ ∗ θSeg,i, wheresPacket has
a maximum length of 1006 bytes according to the maximum
payload size of a MHP packet (see section II-B).3

Furthermore, the tokens in the placeBusBusyrepresents
MHP packets as well as the tokens in the placePool. The
acknowledgment of a MHP block is considered by means of
a properly later firing of the transitiontBus in case of the token
that represents the last packet of a Diagnostic Request.

The main extension concerns the device part. In a device,
MHP packets are received from the bus and at first are stored
in the receiving buffer located on the NIC. This is modeled
by the additional placeReceivingBuffer.

The receiving buffer on a NIC can contain only one MHP
packet per device. Therefore, the placeReceivingBuffercon-
tains a maximum of one token per color. The receiving delay
τRec,i within a device is modeled by the timed transitiontRec

(see section I). Often, this time is caused by the EHC’s polling
with a constant rate. By firing this transition a colored token
migrates from placeReceivingBufferto placeWritingBuffer.
This models the storing of the packet payload in the RAM.

As soon as⌈sSeg/sPacket⌉ packets (tokens with the same
color) are stored on the placeReceivingBuffer, the timed
transitiontWrite fires. This represents writing the reassembled
segment into the flash memory. The writing timeτWrite,i

depends on the segment sizesSeg,i and the writing rate of
the flash memory of devicei.

3We do not consider cuttings due to the segmentation in packets. For our
analysis cuttings are negligible.

IEEE Vehicular Networks and Applications Workshop, co-located with IEEE ICC 2008, 19-23 May 2008, Beijing, China 4



After sending a MHP packet to a device it is ready to receive
again. This is modeled by an additional arc from transition
tRec to placeReadyToReceive.

While writing a segment into flash memory, a device is not
capable to receive packets. For this purpose, an additionalarc
links from placeReadyToReceiveto transitiontWrite.

IV. SCHEDULING ALGORITHMS

A Scheduling Algorithmfor updating software of in-vehicle
electronic devices defines the schedule for the transmission of
diagnostic requests on the Application layer or MHP packets
on the LLC layer, respectively.

This section introduces several scheduling algorithms that
are then evaluated in section V. Due to the well-known
parameters, for each algorithm the complete order of transmit-
ting segments can be calculated before beginning the update
process.

A. Consecutive

The state of the art is to update the devices in a consecutive
manner and not simultaneously. In the former case each device
is served completely one right after another. After all segments
are sent to a device and written into its flash memory, the next
one will be updated. Normally, the bus utilization is low dueto
the slowness of packet reception and the slowness of writing
segments into the flash memory.

B. Scheduling on the Application Layer

On the Application layer, a scheduler knows the trans-
mission order of diagnostic requests containing the software
segments.

1) Immediate Send:The dispatcher that regards anImme-
diate Sendscheduling is ready to send the next diagnostic
request immediately when a corresponding device is not busy
by flash memory writing, but ready to receive. This means that
the dispatcher actually has to wait for a diagnostic response
before it becomes ready to send the next diagnostic request.

It is possible that there is a duration between becoming
the readiness to send and the actual sending due to the bus
occupancy by the transmission of segments for other devices.

An Immediate Send scheduler is simply modeled in the
Petri nets by the fact that the placeSchedulecontains always
a token of each color. Consequently, the firing of transition
tDispatcher depends only on the states of the placesPool and
ReadyToReceive.

2) Round Robin:The dispatcher transmits diagnostic re-
quests to each device in a periodically repeated order. After a
device is updated completely, it is deposited from theRound
Robin(RR) process. It is possible that the dispatcher is blocked
if there is a diagnostic request to send to an already busy
device. The blocking is broken as soon as the dispatcher is
informed about the readiness for receiving of this device bya
diagnostic response. A RR scheduler is modeled by the fact
that the placeSchedulecontains only one token at all times.
By each firing the color of the token is alternating.

3) Weighted Round Robin:Generally, there are differences
regarding to the single update times of the devices. Conse-
quently, there is always an update of a single device that
remains alone at the end. In order to decrease the total update
time this device should be served more often at the beginning.
This is possible by introducing aWeighted Round Robin
(WRR) algorithm that prefers appropriate devices.

The following approach considers the number of segments
θSeg,i for each devicei. The idea is to find an order pattern
that distributes the transmission of segments homogeneously.

Therefore, we introduce a numberni per devicei with ni =
1 as initial value for alli. We get the ratiosri = θSeg,i/ni.
The dispatcher has to serve the devicej with maximumrj .
Afterwards we incrementnj and repeat the calculation of the
ratios. Due to this repetition further devices have to be served.

For instance, there are three devices withθSeg,1 = 153,
θSeg,2 = 100, and θSeg,3 = 67. In the first step the ratios
are r1 = 153/1, r2 = 100/1, r3 = 67/1. We choose device
1. In the second step the ratios arer1 = 153/2, r2 =
100/1, r3 = 67/1. The maximum value isr2 and therefore
we choose device2. In the next step the ratios arer1 =
153/2, r2 = 100/2, r3 = 67/1. Now, the maximum value
is r1 = 153/2 and therefore we choose device1 again. This
algorithm continues until all segments are transmitted. After
all segments of a devicek are schedulednk is set to infinite.

In addition, there is a special rule: The algorithm tries to
swap contiguous elements in order to avoid direct consecutive
transmissions for the same device.

4) Greedy: The idea of aGreedy algorithm is to make
always the choice that looks best at the moment [6]. In our
case, in each step the devicei with the largest remainder
update timemax{τi(u)} at time u will be served as next.
This remainder update time is calculated as

τi(u) = θSeg,i(u)

(

τWrite,i +
sSeg,i

sPacket,i

(τRec,i + τTrans,i)

)

(1)
with

τTrans,i =

⌈

sPacket,i+18

36

⌉

+ 4

44.1 kHz
, (2)

whereτTrans,i is the transmission time for one MHP packet.
The applied MOST- and MHP-specific values are introduced
in section II. The parameterθSeg,i(u) describes the remainder
number of segments at timeu.

During the calculation, the rule to swap contiguous elements
in the determined order as above mentioned has to be applied,
too.

C. Scheduling on the LLC Layer

The diagnostic application segments the software and moves
the segments down to the LLC layer. There, each segment is
encapsulated in a MHP block. The MHP is responsible for
the reliable transmission of every MHP packet of the block
to the target device. Interleaving of MHP blocks enables a
simultaneous transmission to multiple devices. This feature

IEEE Vehicular Networks and Applications Workshop, co-located with IEEE ICC 2008, 19-23 May 2008, Beijing, China 5



TABLE I

OVERVIEW OF THE PARAMETER SETS

Device sSW,i sSeg,i [kbytes] τRec,i [ms] τWrite,i [ms]
[Mbytes] S.1 S.2 S.3 S.4 S.1 S.2 S.3 S.4 S.1 S.2 S.3 S.4

TV receiver 20 16 16 16 16 15 15 10 15 160.96 160.96 160.96 321.92
Navigation system (without map data) 20 16 64 16 16 2 2 10 2 160.96 643.84 160.96 160.96
Mobile phone interface 1 16 1 16 16 10 10 10 10 321.92 20.12 321.92 321.92
Audio amplifier 1 16 4 16 16 10 10 10 10 321.92 80.48 321.92 1287.68
iPod interface 1 16 8 16 16 10 10 10 10 1287.68 643.84 1287.68 6438.4

is actually realized by means of a MOST network driver
enhancement. Thereby, a RR strategy is applied to send MHP
packets to multiple devices simultaneously. In this context, the
RR is non-blocking. The available MHP blocks are examined
one by one and in each case a MHP packet is transmitted.

Certainly, scheduling on the LLC layer is only applicable
if diagnostic requests (software segments) on the Application
layer are multiplexed. Therefore, a scheduling algorithm on the
Application layer has to be applied. In this paper we simply
apply Immediate Send.

V. PERFORMANCEEVALUATION

The models described in section III were implemented by
CPNTools[7]. This tool supports the analysis of timed, colored
Petri nets. As mentioned before, the scheduling algorithmsare
implemented in the transitiontDispatcher that calculates a new
state of the placeSchedulewhile firing.

We assume a multimedia and infotainment domain com-
posed by five devices that have to be updated. The evaluation
criterion is the obtained total update time. We define four
scenarios (S.1 – S.4) by varying the device parameters as listed
in Table I.

In all scenarios the both devices TV receiver and navigation
system have by far the largest amount of update software.
In S.1, the receiving performance of the navigation system is
the best, and the receiving performance of the TV receiver
is the worst. Furthermore, the iPod interface device has the
worst flash memory writing time. InS.2, we vary only the
segment sizes. The other parameters are not changed. This
means that in particular the writing rates of the flash memories
are unvaried. InS.3, we modify the receiving times to identical
values. Finally, inS.4 we change the flash memory writing
times. In this scenario the flash memory of the iPod interface
device performs badly.

The MHP packets carry always the maximum amount
of 1006 bytes. Thereby,τTrans,i is approximately 0.77 ms
according to (2). However, we assume a transmission time
of 1 ms due to an additional delay of the transmission driver.

A. Algorithms on the Application layer

At first, the process of evaluation confirms our expectation
that any simultaneous update has a significant better perfor-
mance than a consecutive update. Furthermore, we see that
the more parameters an algorithm for a simultaneous update
process takes into account, the more the total update time
decreases. The main problem is to find a compromise between
them in order to decrease the update time as much as possible.

TABLE II

TOTAL UPDATE TIME [MM :SS]

Algorithm (Application layer) S.1 S.2 S.3 S.4

Consecutive 16:00 16:00 17:01 25:57
Immediate Send 10:00 11:09 9:20 18:40
RR 10:01 11:10 8:46 18:42
WRR 9:37 10:46 8:55 17:09
Greedy 9:15 10:32 8:46 15:40

TABLE III

TOTAL UPDATE TIME [MM :SS]

Algorithm (LLC layer) S.1 S.2 S.3 S.4

Consecutive 16:00 16:00 17:01 25:57
RR 8:54 8:54 7:11 12:20

The Immediate Send algorithm considers no parameters,
hence applying it does not result in the shortest update times
in none of the scenarios. The RR algorithm leads mostly to
undesired results because it only takes into account the order of
the devices. Therefore, there is often an unfair distribution of
the transmission of the segments. The WRR algorithm tries to
achieve a fair distribution. In most cases, this trial is successful
(seeS.1, S.2, and S.4). However,S.3 shows that WRR can
perform worse than RR.

In all scenarios, the WRR leads to an alternation between
serving the TV receiver and the navigation system. The longer
receiving times of the navigation system inS.3(10 ms instead
of 2 ms) leads to longer serving times. This means that the
WRR algorithm blocks for a longer time even though all other
devices could be served. In contrast, the advantage of the RR
algorithm is that at least at the beginning all devices can be
served without blocking.

The scenarios show that the implemented Greedy algorithm
that considers the remaining update time, is the best choice
in most of the cases, although blocking can also occur. Due
to this blocking behavior, the Greedy algorithm and the RR
algorithm even achieve inS.3 the same total update time.

B. Algorithms on the LLC layer

The above mentioned scenarios are again used to evaluate
the performance of the RR algorithm on the LLC layer. On
the Application layer the Immediate Send algorithm is applied.
Table III lists the results for both the Consecutive algorithm
and the RR algorithm on the LLC layer.

In all scenarios, the RR algorithm achieves the best resultsin
comparison to scheduling algorithms on the Application layer.

IEEE Vehicular Networks and Applications Workshop, co-located with IEEE ICC 2008, 19-23 May 2008, Beijing, China 6



The reason is that the devices have large packet receiving times
in comparison to the transmission times. Therefore, transmit-
ting packets of a segment consecutively causes frequent bus
idle times. The RR algorithm multiplexes packets for multiple
devices and consequently reduces the bus idle times.

VI. CONCLUSION AND OUTLOOK

The amount of in-vehicle software stored in flash memories
increases rapidly. Therefore, future software updates have to
be more efficient. In this paper, we investigated and evaluated
scheduling algorithms that can be applied in order to reach
this aim.

We described technologies, protocols and processes that can
be used for updating software. In passenger cars MOST is
commonly used to interconnect devices in the multimedia and
infotainment domain. MHP supports a reliable transfer of the
update data to the target devices via MOST. A target device
generally offers a Transfer Data Service that is part of UDS
in order to enable its updatability.

We analyzed scheduling algorithms working both on the
Application layer and on the LLC layer. The results show
that the Greedy algorithm performs as best on the Application
layer. It has to take into account many parameters in order
to be efficient. However, in practice these parameters are
often critical because their values can substantially vary, and
therefore be insignificant. For instance, the flash memory
writing rates vary due to impacts caused by, e.g., temperature,
age, and rewrite frequency. Nevertheless, the total update
time can be decreased by applying an intelligent scheduling
algorithm if the deviation of critical values is limited.

The most promising approach is to apply a combination
of a simple algorithm for multiplexing diagnostics’ requests
on the Application layer (like Immediate Send) and RR on
the LLC layer. As shown in this paper, this combination leads
commonly to short update times without concerning additional
parameters.

We consider the software update of electronic devices inter-
connected by MOST. Some conclusions seems to be valid for
other in-vehicle networks, too, e.g.,Controller Area Networks
(CAN) [8] and FlexRay[9] bus systems. For CAN and espe-
cially FlexRay the devices and not the bus system are often

the bottleneck. Therefore, updating devices simultaneously
can improve the performance significantly. In the next steps,
we will investigate the software updates in further in-vehicle
networks.

The introduced scheduling algorithms can be used for
updating the full software that is stored in the flash memory
of a device as well as only parts of them. Updating parts of
the software does not have an impact on the efficiency of
the considered scheduling algorithms. An incremental update
process decreases only the software sizes. Methods to identify
affected software parts are out of the focus of this paper. For
instance, they are considered as methods for version control
and configuration management in [10].

In addition to a simultaneous software update, further
methods could be applied. For instance, the large amount of
software can be reduced by using compression. In the future,
we will focus on a hybrid approach that combines compression
and simultaneous software updates.

ACKNOWLEDGMENTS

The authors would like to thank Michael Scharf for his
helpful criticisms and suggestions.

REFERENCES

[1] M. Broy, I. Krüger, and M. Meisinger,Automotive Software-Connected
Services in Mobile Networks: First Automotive Software Workshop.
Springer, 2004.

[2] MOST Cooperation,MOST Specification – Version 2.5-00, October
2006.

[3] A. Grzemba, MOST. Das Multimedia-Bussystem für den Einsatz im
Automobil. Franzis, 2007.

[4] MOST Cooperation,MOST High Protocol Specification – Version 2.1-
01, February 2001.

[5] International Organization for Standardization,ISO/DIS 14229-1 Road
Vehicles – Unified Diagnostic Services – Part 1: Specification and
Requirements, October 2004.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to Algorithms. The MIT Press, 2001.

[7] CPN Group, University of Aarhus, “CPN Tools – Computer Tool for
Coloured Petri Nets,” wiki.daimi.au.dk/cpntools/, Denmark, 2007.

[8] International Organization for Standardization,ISO 11898-1:2003 –
Road vehicles – Controller area network (CAN) – Part 1: Data link
layer and physical signalling, November 2003.

[9] FlexRay Consortium,FlexRay communication system – protocol speci-
fication – version 2.1, December 2005.

[10] C. Heinisch, V. Feil, and M. Simons, “Efficient configuration man-
agement of automotive software,” in2nd European Congress ERTS
Embedded Real Time Software, January 2004.

IEEE Vehicular Networks and Applications Workshop, co-located with IEEE ICC 2008, 19-23 May 2008, Beijing, China 7


