
On the Response Time of Large-scale Composite Web Services

Michael Scharf

Institute of Communication Networks and Computer Engineering (IKR)
University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Email: scharf@ikr.uni-stuttgart.de

Abstract: This paper studies the response time of a web service middleware that decomposes requests
into sub-queries to different servers and then merges the results. We present a queuing model for such
a fork-join system and an exact analysis for exponential server response times. We also provide
accurate approximations for heavy-tailed server response times, which are a common effect in the
Internet. Heavy-tailed distributions are critical since they may cause very long middleware response
times, in particular in large-scale systems with many servers being involved. We show that in this
case the performance can be significantly improved if the middleware does not have to wait for a few
slow servers, i. e., if the merged result does not need to be absolutely complete. We discuss different
choices to implement such a mechanism and quantify their impact on the middleware response time.
Keywords: Performance evaluation, service platforms, database federation, scalability

1 INTRODUCTION

Many upcoming web services are based on information stored in distributed databases that are of-
fered by different service providers. A middleware can provide uniform access to these multiple data
sources. In order to handle a request, such a middleware must query different service providers in par-
allel and integrate their responses into a single result. In the context of web services, this mechanism
is an example of servicecomposition[1]. The same principle is known as datamerging, media-
tion, or federationin distributed databases. Service composition is based on thefork-join computing
paradigm [2]: A request, or generally speaking a job, is distributed over several service units and
can only be finished when all of them have completed processing. Thus, the overall response time
includes a synchronization delay that is determined by the slowest service unit.

In this paper, we study the response time of a centralized middleware component performing large-
scale composition of web services. Our work is similar to a recent study [1] that analyzes the effects
of exponential response times based on an earlier work in [3]. Unlike [1, 3], we explicitly consider
the effort of joining results. Detailed queuing models for distributed databases have also been studied
extensively, see e. g. [4] and references therein. However, most existing work only considers constant
or exponential service times. As will be shown later, measurements in the WWW and in e-commerce
systems have observed heavy-tailed server response time distributions. From this we conclude that
this effect may also be common in large-scale heterogeneous web services.

While it is intuitively clear that heavy-tailed response times can cause long response times in fork-
join systems, we are not aware of a detailed discussion of this effect and of possible remedies. We
argue that there are web services not requiring an exhaustive service composition, i. e., a reasonably
complete result is sufficient. We suggest that the performance of such services can be improved by



Service 
provider

Data 
base

Data 
base

Data 
base

Fork

Request

Federated 
response

Request

Partial response
Federation 
component

Service requester 
(client)

Join

Total 
response 

time
Federation 

time

Server 
response time

Fanout

Service 
registry

Decom− 
position

Figure 1:Data processing in a composite web service platform

considering only results from fast servers. Alternatively, timeouts can be used to avoid unnecessarily
long waiting times. However, since in both cases the query result can be incomplete, the impact of
setting a threshold or a timeout duration must be well understood. We present the methodology for
analyzing the performance of such mechanisms and apply it to simple but realistic examples.

The rest of the paper is structured as follows: In Section 2, we model a system offering composite
web services and discuss the main sources of delay. We present an exact and an approximative
analysis for exponential and Pareto distributed response times in Sections 3 and 4, respectively. In
Section 5, we study strategies to improve the response time. Finally, Section 6 concludes the paper.

2 SYSTEM MODEL

2.1 Architecture of a web services platform

Our research is motivated by the vision that future location-based services will be based on large-scale
models of the real world, which are provided by many different providers and thus have to be federated
by a web service middleware [5]. The system architecture of such a service platform is shown in
Fig. 1: A service requester, e. g., a mobile terminal, can perform requests to a middleware. This
so-calledfederation componentprovides uniform access to information offered by different service
providers. To announce their services, the providers publish descriptions to a service registry.

As discussed in [5], such systems are unlikely to be realized by a single database if third-party con-
tent providers are involved. In the example of location-based services, this could mean that there are
various providers offering information, e. g., about points of interest. The data is stored in databases
and can be accessed by XML-based protocols. When a request arrives, the federation component
determines with help of the service registry which servers store corresponding data. Then, the request
is decomposed into sub-queries to each server (fork). Thereafter, the partial results of the sub-queries
are collected and integrated into a single consistent result (join), which is sent back to the client.

Currently, such service platforms do not exist at large scale, but this may change in the future, e. g.,
because of the increasing availability of sensor information. This raises the question how scalable
such an architecture is, in particular, if the number of content providers increases and thus many
servers have to be queried. We label the number of servers invoked in parallel as thefanout factorN .
The main performance metric of such a system is the response timeT of the federation component,
which is composed of two main sources of delay: First, the response timesRi (1 ≤ i ≤ N ) of the
databases, which also include processing and transmission delays. The performance of databases



depends on many different factors and is hard to model. As a consequence, we characterize the
database response time by its distribution function only.

The second main source of delays is the federation component. Each incoming response has to
be processed and merged to the overall response. For complex data structures this join operation can
require significant processing. We model the composition by a single queue with service timeCi. The
federation component can only reply to the client’s request if all partial responses have been received
and processed. We assume that the join processing can start when the first partial response has arrived.
Note that another solution would be to wait until all partial responses have been received.

This model focuses on one transaction only and thus does not incorporate resource contention
caused by many clients to be served in parallel. We assume these effects to be modeled by the
distribution functions. For simplicity, we do not consider analyzing the request and querying the
service registry. Modeling the federation process by a single queue also neglects that this could
partially be done in parallel. Splitting the problem to different service units may reduce the response
time compared to a sequential processing [2]. Alternatively, such a system could also be studied by
modeling each of the components by M/G/1-queues, as it is done e. g. in [4]. However, the response
time of fork-join queuing networks is difficult to obtain even for exponential service times [2].

2.2 Federation response time

In the following, we assume that all servers have the same statistical characteristics: The response
timesRi of the servers are independent and identically distributed with a common cumulative distri-
bution functionFR(t), the density functionfR(t), and the meanr. This assumption is reasonable in
rather homogeneous systems with more or less equally loaded servers. In principle, the model pre-
sented in the previous section could also be studied for different distributions for eachRi. Then, the
federation response time is likely to be dominated by the slowest server. Such an example is analyzed
for exponential response times in [1, 3]. However, the general case of different server characteristics
is difficult to handle analytically and therefore left for further studies.

As explained, the federation component has to wait for allN servers. The maximum of the waiting
(or synchronization) time is thus given by max(R1, . . . , RN). Since the distribution function of the
maximumRmax of N i. i. d. random variables isFRmax(t) =

∏N
i=1 FR(t) = FR(t)N , it can easily be

seen that the mean waiting time for all servers is

W = E[Rmax] = N

∫ ∞

0

t FR(t)N−1 fR(t) dt. (1)

For simplicity, we also assume the processing delaysCi of the partial responses in the federation
component to be i. i. d. with distributionFC(t) and meanc. Since the total processing time isCsum =∑N

i=1 Ci, the mean the federation processing time would be

F = E[Csum] = N · c (2)

if all responses arrived in the middleware at once. In order to normalize the values, we introduce
κ = r

c
, which can be interpreted as the relative “speed” of the federation component compared to the

servers. Withκ, the federation processing time can be expressed asF = N
κ
· r.

Given the fact that the join operation can start when the first partial responses have arrived, the
following inequality must hold for the total response timeT :

max (W, F ) ≤ T ≤ W + F. (3)



The extreme caseTmax = W + F would occur if the federation component first had to wait for all
partial responses. The exact value ofT depends on the distributionsFR(t) andFC(t). As will be
shown in the following sections, a quite accurate approximation is

T ≈ T̂ = max(W + c, w + F ) , (4)

wherew = E[Rmin] = N
∫ ∞

0
t (1− FR(t))N−1 fR(t) dt refers to the minimum of theN server re-

sponse times. This estimation can be motivated by two extreme cases: For a quite fast federation
processing, i. e.,κ � N , the queue is empty most of the time. Therefore, the last response arriv-
ing afterW can immediately be processed, resulting in a mean total delay ofW + c. In contrast, if
κ � N , the federation is rather slow and thus all requests get queued. As the first response arrives
afterw, the mean federation response time isw + F .

The federation response timeT is likely to be larger than the mean server response time. We define
a federation slowdown factorS = T

r
that quantifies the increase of the response time compared to an

average single server. In the following, we study it for two examples: The exponential and the Pareto
distribution. However, the methodology can be applied to other distributions, too.

3 EXPONENTIAL RESPONSE TIMES

In this section, we calculate the federation response timeTexp analytically and numerically for the
case thatR andC are exponentially distributed:FR(t) = 1 − e−λ t andFC(t) = 1 − e−ν t for t ≥ 0.
Thus, the mean server response time isr = 1

λ
, and the mean federation processing time isc = 1

ν
= r

κ
.

3.1 Analytical model

The mean of the sum ofN exponential distributions is1
λ
HN , whereHN =

∑N
i=1

1
i

is the N -th
harmonic number (see e. g. [1]). The waiting time is thus

Wexp = r HN = r
N∑

i=1

1

i
. (5)

Since theN -th harmonic number can be approximated byHN ≈ ln N + γ + 1
2 N
− 1

12 N2 + . . . , the
waiting time increases logarithmically withN . γ ≈ 0.5772 is the Euler-Mascheroni constant.

Texp can be determined by using a continuous time Markov chain with the methodology that has
been used in [3]. We define the Markov chain as follows: The state(i, j) indicates thati responses are
queued in the federation, andj servers are still to respond. As illustrated in Fig. 2, the transition rate
from state(i, j) to (i+1, j−1) is thenj λ. Also, transitions from(i, j) to (i−1, j) occur with rateν.
From this follow the flow equilibrium equations for0 ≤ i ≤ N , 0 ≤ j ≤ N − i, and(i, j) 6= (0, 0)

(a1 + κ a2) π(i, j) = a3 π(i− 1, j + 1) + κ a4 π(i + 1, j) (6)

with the special casesN π(0, N) = κπ(1, 0) andπ(0, 0) = 0, and the coefficients

a1 = j a2 =

{
1 i > 0,

0 else
, a3 =

{
j + 1 i > 0

0 else
, a4 =

{
1 i + j < N

0 else
.

A steady-state exists if we assume that a new request arrives immediately after a response has been
completed. By further considering

∑N
i=0

∑N−i
j=0 π(i, j) = 1, we can solve for the steady-state proba-

bilities π(i, j) by recursion, starting fromπ(0, N). Since in every cycle there is only one federation



0, 3

0, 2

0, 1

1, 2

1, 1 2, 1

1, 0 2, 0 3, 0

3 λ

2 λ2 λ

λ λ λ

ν

ν

ν

ν

ν ν

j

i

Figure 2:Markov chain for the caseN = 3

1 10 100 1000
Fanout factor N

1

2

3

4

5

6

7

8

9

10

Fe
de

ra
tio

n 
sl

ow
do

w
n 

fa
ct

or
 S

ex
p

Analysis
Approximation

κ=N

κ=N/4

κ=1 κ=10

κ=10

Figure 3:Expon. distr. resp. times with diff.κ

process in execution, the average response time can be obtained by applying Little’s law (see [3]):

Texp =
1

ν · π(1, 0)
=

∑N
i=0

∑N−i
j=0 π(i, j)

ν · π(1, 0)
. (7)

In the latter expression, one can assume an arbitrary start valueπ(0, N) 6= 0. Some results for small
fanout factorsN are

N = 1 : Texp = r
(
1 + 1

κ

)
,

N = 2 : Texp = r
(

3
2

+ 2
κ
− 1

1+κ

)
,

N = 3 : Texp = r
(

11
6

+ 3
κ
− 5

1+κ
+ 3

2+κ
+ 2

(1+κ)2

)
.

For largerN , it is more efficient to solve (7) numerically, or to use the approximation given by (4):

Texp≈ T̂exp = r ·max
(
HN + 1

κ
, 1

N
+ N

κ

)
. (8)

3.2 Numerical results

Figure 3 shows the slowdown factorSexp = Texp/r as a function of the fanout factorN . Both the
exact value and the estimated value according to (8) are plotted for different choices ofκ. The
approximation is rather accurate, except for the example ofκ = N/4, which lies between the two
extreme cases that have been used to derive the approximation. Also note that the response time may
even slightly decrease for largerN . In general, the federation “speed”κ must be scaled with the
fanout factorN because otherwise the federation component becomes a bottleneck. Figure 3 also
illustrates that there is a lower bound forTexp given byHN , which increases logarithmically withN .

3.3 Evaluation and discussion

The analysis in the previous section reveals that a large fanout increases the response time because
of synchronization delays. However, in reality the response time of databases is unlikely to be expo-
nentially distributed. For instance, the response time must always be larger than a minimumk > 0,
which could be incorporated in the model by using a shifted negative-exponential distribution forR:



10-3 10-2 10-1 100 101 102 103

Network and web server response time [s]

10-5

10-4

10-3

10-2

10-1

100

C
om

pl
. c

um
ul

. d
is

tri
bu

tio
n 

fu
nc

tio
n

Measurements
Pareto (α=1.14, k=0.067 s)
Pareto truncated (m=180 s)
Pareto cutoff (m=180 s)

Pareto
cutoff

Measurements

Pareto

Pareto truncated

Figure 4:Measured web server response time

1 10 100 1000
Fanout factor N

1

10

100

1000

Fe
de

ra
tio

n 
sl

ow
do

w
n 

fa
ct

or
 S

pa
r

Simulation
Approximation α = 1.14

α = 1.5

α = 2.0

α = 3.0

Figure 5:Pareto distr. with different tail factorsα

FR(t) = 1− exp
(
−x−k

λ

)
for x ≥ k. This means thatk has to be added toTexp. Another choice could

be normal distributions: If there are a number of different tasks to be performed, each with a random
delay, the total delay is likely to asymptotically have a normal distribution [6].

4 HEAVY-TAILED RESPONSE TIMES

In this section we show that the federation of different servers is much more challenging if server
response times are heavy-tailed, i. e., if single values are likely to be orders of magnitudes higher than
the mean. Motivated by measurement results, we use the Pareto distribution function

FR(t) =

{
0 t ≤ k

1−
(

k
t

)α
t > k

, (9)

which has an infinite variance forα < 2 and is then heavy-tailed.

4.1 Measurement results for server response times

There is some empirical evidence for heavy-tailed response time distributions in real systems, in par-
ticular, if they are heterogeneous. For instance, the response time of web servers, including network
delay, is typically heavy-tailed. This is illustrated by Fig. 4, which presents measurement results ob-
tained from monitoring HTTP traffic1. The measurements show that the web server response time,
i. e., the delay between the first TCP segment of the request and the first TCP segment of the response,
can be described by a Pareto distribution, at least up to a response time of about 180 s. Better models
using acutoff or truncationwill be discussed in Section 5.2. The best-fit parameterization for the
distribution tail isα = 1.14 andk = 0.067 s, corresponding to a mean ofr = k α

α−1
= 0.55 s.

A similar study [7] reports that file transmission times in the WWW are Pareto distributed with
shape factorα ≈ 1.2, up to several hundreds of seconds. A possible explanation is that the file sizes
are heavy-tailed. Recent measurements on e-commerce traffic [8] reveal heavy-tailed server response
times withα ≈ 1.55, which is attributed to the burstiness of arriving requests. We conclude from this
that heavy-tailed response times should be considered in the dimensioning of web service platforms.

1The measurements have been performed in a student dormitory access network at the University of Stuttgart in
November 2000 and include about 60 million IP-packets of more than 200 end users.



4.2 Approximations

For Pareto distributed server response timesRi, the waiting timeWpar can be obtained explicitly from
the maximum ofN random variables, too. Even more generally, thei-th moment of thej-th order
statistic(see Section 5.1) ofN i. i. d. Pareto random variables is known to be [9]:

µi,j =
Γ(N + 1) Γ(N − j + 1− i

α
)

Γ(N + 1− i
α
) Γ(N − j + 1)

ki. (10)

Here, we consider the mean value of the maximum, i. e.,µ1,N . Eq. (10) can be simplified by ap-
proximating the gamma functionΓ(x) as follows:Γ(x + 1) = x! ≈

(
x
e

)x√
2 π x for x � 1. Thus,

Γ(N+1)

Γ(N+1− 1
α

)
≈ N1/α for N � 1. Also,Γ(x) ≈ 1

x
+ γ(x− 1) for x ∈ (0, 1]. Applying this to (10) gives

Wpar≈ Ŵpar = r ·N1/α
(
1− γ (α− 1) α−2

)
. (11)

By neglectingγ (α− 1) α−2, this expression can be further simplified tôWpar≈ r ·N1/α. SinceWpar

scales withN1/α, the tail shapeα has a very significant impact: Ifα is close to1, the mean waiting
time can be significantly larger thanr, even for a small number of serversN .

The mean value of the minimum can be obtained from (10) forj = 1: wpar = N
N−1/α

k. Inserting
in (4) yields to the following approximation forTpar:

Tpar≈ T̂par = max
(
Ŵpar +

r
κ
, r (α−1)

α−N−1 + r N
κ

)
. (12)

4.3 Numerical results

The federation response timeTpar can be obtained by simulation of the model shown in Fig. 1. Unless
explicitly otherwise stated, we assume in the followingα = 1.14, κ = N , and exponential distributed
federation processing timesC. Other distributions forC, such as a constant value, do not have a
significant impact on the results.

From Fig. 5 follows that the approximation̂Tpar given by (12) is quite accurate. Due to long
synchronization delays, the federation slowdown factorSpar = Tpar/r varies over several orders of
magnitude, in particular forα = 1.14. For instance, a fanout factor of about20 is sufficient to
increase the federation response time by one order, i. e.,Tpar > 6 s. The largerα is and the faster
the distribution tail drops, the less dominant is the impact of the synchronization. Nevertheless, we
conclude from Fig. 5 that in a system withα close to1 it is hardly feasible to perform large-scale
service composition, if the response time is not improved by other means.

5 IMPROVING RESPONSE TIME BY INCOMPLETE RESULTS

In this section we propose and analyze two strategies to reduce the response time of large-scale com-
posite web services. We focus on solutions that do not require speeding up the servers since this
might not be an option in a multi-provider scenario. In the first approach, the federation component
does not wait for slow servers, i. e., it only considers responses of a part of the databases. Obviously,
it depends on the offered service whether such an incomplete result is acceptable. In the example of
location-based services, it might be sufficient to provide information aboutmostpoints of interest in
a certain area. Thus, if some results can only be obtained by waiting for responses from very slow
servers, it might be better to construct the federated response earlier. Alternatively, long response



times can be addressed at the servers by a monitoring component that sends an error message if no re-
sult can be provided within a certain time. After this timeout, the federation component does not have
to wait for this server any more. The two approaches differ in that the first mechanism is deployed in
the middleware, while the latter one must be implemented in each server.

5.1 Restriction to fast servers

There are two ways to implement a limitation to fast servers in a federation component: First, the
middleware could set a single timeoutM and send the response based on the information that has been
received before the timeout expires. This limits the federation response time toT ≤ M . Alternatively,
it could suppose the federated response to be complete if a predefined number of responses have been
received and processed. Then, the response time depends on the portion of serversq which must have
answered in order to get a sufficient result.

The performance of the latter mechanism can be studied by the theory oforder statistics[10]: If
R1, . . . , RN are an i. i. d. sample from a distribution with densityfR(t), and if they are ordered from
lowest to highest value so thatR(1) ≤ · · · ≤ R(N), the variableR(j) is called thej-th order statistic.
The sample maximum is a special case withj = N . The density function of thej-th order statistic is

fR(j)
(t) = N

(
N − 1

j − 1

)
fR(t) FR(t)j−1 (1− FR(t))N−j for 1 ≤ j ≤ N. (13)

The mean waiting timeW ′ of the q percent fastest servers out ofN is thus the mean of the order
statistic forj = dq ·Ne. Note that at least one server can be omitted only ifq ≤ 1−N−1.

It can be shown that the asymptotic distribution of quantiles of order statistics is normal whenN
andj tend to infinity but the ratioq = j/N remains constant [10]. The quantile meanΩ is given by

FR (Ω) = q, i. e., Ω = F−1
R (q). (14)

As a consequence, independent of the distributionFR(t), the mean response time of a certain quantile
is finite even forN →∞. Ω is also a quite good approximation forW ′ as long asq ≤ 1−N−1.

For the Pareto distribution, we can useΩ = k (1− q)−1/α to get an approximation forW ′
par:

W ′
par≈ Ŵ ′

par =

{
k (1− q)−1/α q ≤ 1−N−1

r ·N1/α (1− γ (α− 1)/α2) else
, (15)

Therein, the result from (11) is used ifq is too large and thus the federation component must wait for
all servers. Since onlydq Ne responses have to be processed, eq. (12) can be modified as follows:

T ′
par≈ T̂ ′

par = max
(
Ŵ ′

par +
r
κ
, r (α−1)

α−N−1 + r dq Ne
κ

)
. (16)

Figure 6 illustrates the effect of incomplete results: For anyq < 1, the response timeT ′
par ap-

proaches a finite limit even if the fanout is very large. The steps are due to the condition that
j = dq · Ne must be integer. Forα = 1.14, a limitation toq = 95 % significantly improves the
response time (forN ≥ 20). Also, the response timeT ′

par is quite close to the approximated̂T ′
par.

5.2 Server-based timeouts

Another way to reduce response times are server timeouts after the timem. A fixed timeout duration
results in acutoff of the response time distribution function. Such an effect can be observed at



1 10 100 1000
Fanout factor N

1

10

100

1000

Fe
de

ra
tio

n 
sl

ow
do

w
n 

fa
ct

or
 S

pa
r

Simulation
Approximation q = 100 %

q = 99 %

q = 95 %

Figure 6:Effect of restriction to fast servers

1 10 100 1000
Fanout factor N

1

10

100

1000

Fe
de

ra
tio

n 
sl

ow
do

w
n 

fa
ct

or
 S

pa
r

Simulation, no timeout
Simulation, truncated Pareto distr.
Simulation, cutoff Pareto distr.
Approximation

 m =
180 s

m = 10 s

no timeout,
m → ∞

Figure 7:Effect of timeouts in the servers

t = 180 s in the measurement of HTTP traffic in Fig. 4. Thus, timeouts can be modeled by

F ′′
R(t) =

{
G(t) t ≤ m

1 t > m
, (17)

with G(t) = FR(t). The probability that the server timeout does not expire isq = FR(m). For
analytical studies, it can also be beneficial to consider atruncationof the distribution withG(t) =
FR(t)/FR(m), because this avoids the Dirac impulse in the density function. Furthermore, timeout
durations could be calculated dynamically; thenF ′′

R(t) would depend on the timeout implementation.
In general, the ratio of successfull responses is given by

q = 1−
∫ ∞

0

F ′′
R(t)− FR(t)

1− FR(t)
fR(t) dt. (18)

Once again, we will study Pareto distributions as an example. Thei-th moment of thej-th order
statistic ofN truncated Pareto distributions can be expressed by a hypergeometric function [9]:

µ′′i,j = ki
2F1

(
i
α
, j; N + 1; 1−

(
k
m

)α)
. (19)

By using a series expansion of2F1 (a, b; c; z) aroundz = 1, which is valid for a rather long timeout
durationm, and applying again some approximations for the gamma function, (19) can be used to
obtain the following formula for the maximum waiting time:

W ′′
par≈ Ŵ ′′

par =

{
r
(
N1/α −N

(
k
m

)α−1
)

for N < α−α/(α−1)
(

m
k

)α

m else
. (20)

For a shorter timeout, i. e., whenm is of the order ofWpar, it is obvious thatW ′′
par is rather close tom.

Then, eq. (20) corresponds directly to (15).T̂ ′′
par can be obtained by inserting (20) in (16).

The simulation results in Fig. 7 show that even a rather large timeoutm such as180 s can sig-
nificantly improve the federation response timeT ′′

par because of the missing tail of the distribution.

Then,T ′′
par is quite well approximated bŷT ′′

par. A smaller timeout, e. g.,m = 10 s, limits the federation
response time to this value, but the approximationW ′′

par≈ m is only asymptotically correct. Further-
more, the difference between thecutoff andtruncationmodeling is more significant for smallerm.
Nonetheless,̂T ′′

par can give a good estimation how timeouts improve the federation response time.



5.3 Other alternatives

There are also other possibilities to address the problems discussed in this paper, but they require
more detailed system models. For example, the number of servers to be queried could be limited by
a threshold: Only if the result of the first query is not sufficient, the scope will be extended to further
servers. Also, caching of results could improve performance if this avoids queries to slower servers.

6 CONCLUSION

Composite web services are based on fork-join operations. Since their completion time is dominated
by the slowest service unit, the tail of the server response time distribution significantly affects the
performance of a web service middleware. This paper shows at the example of exponential and Pareto
distributed response times that this may be a problem for large-scale service composition. We provide
simple and accurate approximations to quantify the impact on the response time of systems where all
servers have the same characteristics. A possible solution could be to consider only results from faster
servers, which implies a trade-off between performance and response completeness. We show that
omitting a few slow servers (such as 5 %) can significantly improve the response time. Our results
can be used to derive dimensioning guidelines for large-scale composite web service platforms.

Acknowledgments

This work is funded by the German Research Foundation (DFG) through the Center of Excellence
(SFB) 627. The author would like to thank Bernd Gloss, Marc Necker, Andreas Reifert and Gert
Willmann for many fruitful discussions and Johannes Färber for providing the measurement results
used in Fig. 4.

References

1. D. A. Menascé, “Response-time analysis of composite web services,”IEEE Internet Computing, vol. 8,
no. 1, pp. 90–92, 2004.

2. R. Nelson and A. N. Tantawi, “Approximate analysis of fork/join synchronization in parallel queues,”IEEE
Trans. on Computers, vol. 37, no. 6, pp. 739–743, 1988.

3. D. A. Menascé, D. Saha, S. C. da Silva Porto, V. A. F. Almeida, and S. K. Tripathi, “Static and dynamic pro-
cessor scheduling disciplines in heterogeneous parallel architectures,”Journ. of Parallel and Distr. Comp.,
vol. 28, pp. 1–18, 1995.

4. B. Cahoon, K. S. McKinley, and Z. Lu, “Evaluating the performance of distributed architectures for infor-
mation retrieval using a variety of workloads,”ACM Trans. Inf. Syst., vol. 18, no. 1, pp. 1–43, 2000.

5. D. Nicklas, M. Großmann, T. Schwarz, S. Volz, and B. Mitschang, “A model-based, open architecture
for mobile, spatially aware applications,” inProc. 7th Intl. Symp. on Spatial and Temporal Databases,
Redondo Beach, CA, USA, 2001.

6. V. S. Adve and M. K. Vernon, “The influence of random delays on parallel execution times,”SIGMETRICS
Perform. Eval. Rev., vol. 21, no. 1, pp. 61–73, 1993.

7. M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: Evidence and possible
causes,”IEEE/ACM Trans. Netw., vol. 5, no. 6, pp. 835–846, 1997.

8. U. Vallamsetty, K. Kant, and P. Mohapatra, “Characterization of e-commerce traffic,”Electronic Commerce
Research, vol. 3, no. 1-2, pp. 167–192, 2003.

9. N. L. Johnson, S. Kotz, and N. Balakrishnan,Continuous Univariate Distributions, 2nd ed., John Wi-
ley&Sons, 1994, vol. 1.

10. M. G. Kendall and A. Stuart,The Advanced Theory of Statistics, 2nd ed., Charles Griffin, 1963, vol. 1.


	INTRODUCTION
	SYSTEM MODEL
	Architecture of a web services platform
	Federation response time

	EXPONENTIAL RESPONSE TIMES
	Analytical model
	Numerical results
	Evaluation and discussion

	HEAVY-TAILED RESPONSE TIMES
	Measurement results for server response times
	Approximations
	Numerical results

	IMPROVING RESPONSE TIME BY INCOMPLETE RESULTS
	Restriction to fast servers
	Server-based timeouts
	Other alternatives

	CONCLUSION
	References

