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Abstract— Many signaling protocols in IP networks need a
protection against message loss, but they do not require a strict
in-sequence data delivery. Since TCP provides reliable in-order
transport, end-to-end delays may be unnecessarily increased due
to head-of-line blocking. An alternative transport protocol is
SCTP, which is optimized for signaling applications and provides
mechanisms for reliable, partial-ordered or unordered message
delivery. In this paper, we quantify the impact of head-of-line
blocking on the response time of transaction-based signaling
applications. In order to mitigate this problem, we compare dif-
ferent solutions based on TCP and SCTP. Both a new analytical
model and measurements on state-of-the-art operating systems
show to which extend SCTP can improve transport delays by
leveraging transmission over multiple parallel streams or using
unordered data delivery. Our analysis reveals that using one or
multiple parallel TCP connections can result in much higher
end-to-end delays, even for moderate packet loss probabilities.
We also observe significant differences in the TCP performance
of different operating systems.

I. INTRODUCTION

“Next Generation Networks” (NGN), such as the “IP Mul-
timedia Subsystem” (IMS) standardized by 3GPP, differ from
traditional IP networks by deploying stateful application layer
entities (e. g., softswitches) in the core network, which in-
teract by different signaling protocols: The Session Initiation
Protocol (SIP) is used for session control, and DIAMETER
for authentication, authorization, and accounting. Furthermore,
session border controllers (SBC) and middleboxes such as
network address translators and firewalls must be controlled,
e. g., by MEGACO/H.248, NSIS, or the Simple Middlebox
Configuration Protocol (SIMCO). These signaling protocols
have quite stringent delay requirements because transaction
delay may contribute to call setup delays perceived by users.

The Transmission Control Protocol (TCP) is the default
choice for reliable transport in the Internet. Since TCP ensures
reliable in-order delivery, end-to-end delays are increased due
to head-of-line blocking when IP packets get lost. This effect is
particularly critical on links with high data rates, e. g., between
large softswitches and other central NGN entities.

The Stream Control Transmission Protocol (SCTP), which
has been developed as a transport layer protocol especially for
signaling applications, addresses this problem by allowing un-
ordered delivery of messages to the application. Furthermore,
SCTP offers a partial-ordered service, i. e., preservation of
sequence will be guaranteed only for subsets of all messages.
In addition to mechanisms to mitigate the delaying effect
of head-of-line blocking, SCTP also provides functions for

environments with high reliability and security requirements.
Therefore, SCTP is proposed as an alternative to TCP for many
NGN signaling protocols, such as DIAMETER [1], H.248 [2],
NSIS [3], or SIMCO [4]. SIP can benefit from SCTP, too [5].

While the reduction of head-of-line blocking is a well-
known feature of SCTP, there are only few studies that
quantify the impact of this effect on end-to-end delays. To the
best of our knowledge, existing works either use simulations
or measurements only, and a detailed analytical study has not
been published so far. In this paper, we analyze the response
time of transaction-based signaling protocols over TCP and
SCTP. Potential alternatives to TCP for improving delays are
multiple parallel TCP connections, multiple SCTP streams,
and SCTP unordered mode. We compare these approaches
and quantify the corresponding response times when facing IP
packet loss, both by an analytical model and by measurements
on different operating systems.

The remainder of the paper is organized as follows. In
Section II, we discuss how signaling applications can leverage
the protocol mechanisms provided by SCTP or parallel TCP
connections. Section III presents an analytical model for
reseqeuencing delays. In Section IV, we present measurement
results for end-to-end delays and compare them to the analyt-
ical approximations. Finally, Section V concludes this paper.

II. HEAD-OF-LINE-BLOCKING IN TRANSPORT PROTOCOLS

A. Message Delivery Modes

The classical Internet transport protocols either provide an
ordered reliable service (TCP) or one that does not guaran-
tee any ordered delivery and which is not reliable (UDP).
However, reliability (i. e., protection against message loss) and
ordered delivery (i. e., passing the messages to the receiving
application in the same sequence as they were sent by the
sender) are orthogonal issues [6]. Many signaling applications
have high reliability requirements and thus need a reliable
transport protocol, but they do not require an ordered delivery
of signaling messages. With respect to ordering, the require-
ments of applications can be subdivided into three classes [6]:
(1) ordered, (2) partial-ordered, or (3) unordered delivery. In
the second case, the transport protocol must preserve only the
ordering relation for subsets of all messages.

Head-of-line blocking can occur when transport protocols
offer ordered or partial-ordered service: If IP packets get
lost, subsequent messages have to wait for the successful
retransmission in the receiver queue and are thus delayed.



Due to real-time requirements, resequencing delays are critical
for signaling protocols. Of course, packet loss probabilities in
signaling networks are usually small. However, on signaling
links with a high amount of traffic, many messages may be
affected even by rare packet loss. In the following, we discuss
three different alternatives to the usage of one TCP connection,
which is the default choice for many signaling protocols. We
do not detail using UDP, since this requires an application-
level error recovery, flow control, etc., which can hardly be
realized as efficient as in the transport layer [5].

B. Multiple TCP Connections
A straightforward solution to reduce head-of-line blocking

is to use several parallel TCP connections between the same
two end systems. If one connection is subject to head-of-
line blocking, other connections can still deliver messages.
For partial-ordered delivery, all messages that are in a causal
relationship have to be transmitted via the same connection.

This solution does not require a new transport protocol.
However, it has several drawbacks compared to SCTP, which
will be considered below: First, there is more overhead, as each
TCP connection must be established, maintained, and closed
separately. Second, due to the stream-oriented nature of TCP,
the receiving application must be prepared to receive only a
part of a message. The handling of the required buffers is
more complex for parallel connections. And third, each TCP
connections has to recover from packet loss independently,
whereas SCTP applies error recovery and congestion control
mechanisms to the aggregated message flow. We will show in
the next sections that the latter strategy can improve delays.

C. SCTP Multistreaming
SCTP is a message-oriented, general purpose transport

protocol optimized for signaling transport. It allows to split one
association into up to 65536 logical subchannels per direction,
so-called streams. Each user message is transmitted in one of
these streams, and SCTP ensures in-order delivery only within
the same stream. This is similar to using several parallel TCP
connections, but avoids the drawbacks mentioned above.

An example for an application using partial-ordered trans-
port with SCTP is the dynamic control of firewalls by
SIMCO [7]. This protocol allows to establish “policy rules” in
the firewall, e. g., for allowing the media streams of a VoIP call
to pass the firewall. As specified in [4], signaling messages
that create a new firewall policy rule are distributed evenly
over several SCTP streams, e. g., by means of a round robin
strategy. In contrast, messages that modify or delete an existing
policy rule are sent via the same stream as the initial message
that established this policy rule, in order to retain causality.

D. SCTP Unordered Transport
When sending messages in unordered mode, SCTP offers

reliable transport, but delivers messages to the upper layer
protocol as they arrive. This solution completely avoids head-
of-line blocking. However, the upper layer protocol must have
own mechanisms to deal with potentially reordered messages.
This mode of operation is used, e. g., for SIP over SCTP [5].

E. Related Work

Resequencing delays are a well-known effect and sophisti-
cated theoretical models for automatic repeat request (ARQ)
protocols have been developed (see, e. g., [8]). However, to
the best of our knowledge, existing analytical models do not
consider the specific algorithms used by TCP and SCTP, such
as the fast retransmit mechanism. Several simulation-based
studies have compared end-to-end delays of TCP and SCTP,
but their results are ambiguous: [9] compares the delay of SIP
messages transported over UDP, TCP, or SCTP, respectively. In
the latter case, only one stream with reliable unordered service
is used. The authors conclude that for packet loss probabilities
smaller than 0.3 % head-of-line blocking in TCP does not in-
troduce a significant performance decrease compared to SCTP.
A similar work [10] finds no significant differences between
SCTP and TCP with selective acknowledgments. However,
these simulation results contradict recent measurements based
on FreeBSD [11]. A drawback of these papers is that they
do not provide a detailed explanation of the observed effects,
and they do not consider multiple SCTP streams. In [7],
we propose an analytical model for the transport of SIMCO
over SCTP that quantifies how transmission over multiple
ordered SCTP streams can reduce resequencing delays. In
the following, we extend our analytical model from [7] to
signaling transport over TCP.

III. APPROXIMATION OF RESEQUENCING DELAYS

A. Model Assumptions

In this section, we analyze the effect of head-of-line block-
ing for different transport layer solutions. We consider partial-
ordered data transmission over N ≥ 1 SCTP streams, SCTP
unordered mode and the usage of one or several TCP con-
nections. We assume that the path between the two endpoints
has a constant unidirectional delay of ∆ and thus a minimum
round-trip time RTT = 2∆. The path is supposed to suffer
from symmetric random packet losses with loss probability p,
which may be caused by congestion or transmission errors.

For simplicity, signaling messages are supposed to be sent
with constant interarrival time d. Under the assumption that
the total traffic λ = 1/d is equally distributed over the N
SCTP streams or TCP connections, the load on each of them is
λeff = λ/N . Furthermore, we assume that the sender window
does not restrict the amount of data that can be sent. As shown
later, this is a reasonable assumption as long as p is small.

B. Error Detection in TCP and SCTP

TCP as well as SCTP can recover from packet loss by
two mechanisms, which are used in a similar way in both
protocols: The fast retransmit and the retransmission timeout.
In the following, we explain their impact on end-to-end delays
at the example of SCTP.

An SCTP endpoint can detect packet loss if transmission
sequence numbers (TSNs) are missing in the selective ac-
knowledgments (SACKs). A SACK, which is sent upon the
reception of a data chunk on any stream, contains missing
TSN reports for all streams. An SCTP endpoint retransmits
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Fig. 1. Illustration of resequencing delays for 3 SCTP streams

data when three subsequent SACKs include a missing report.
This SCTP error recovery by a fast retransmit is illustrated in
Fig. 1. For this figure, we assume that the SCTP association
has N = 3 streams and a round robin scheduling strategy
is applied, i. e., the data chunks with transmission sequence
numbers 0, 3, 6, . . . are sent via stream #0. In this example,
the data chunk with TSN 0 is lost, which is sent at t0. At t2 =
t0 +RTT +3 d the sender has received 3 SACK chunks with
missing reports and performs the retransmission. The time to
detect the lost packet follows as DFXMT = t2−t0 = RTT+3 d.

The reliable data delivery is also ensured by a timeout mech-
anism: If the the oldest outstanding data chunk has not been
acknowledged when the retransmission timeout expires, miss-
ing chunks are retransmitted. As depicted in Fig. 2, the timer is
restarted whenever a new acknowledgment arrives. Thus, the
error detection time is DRTO = RTO + max (RTT − d, 0).

Considering both mechanisms, the error detection time is

D = min (RTT + 3 d, RTO + max (RTT − d, 0)) . (1)

However, this expression is an approximation only since more
than one packet, the retransmission, or acknowledgments may
get lost, too. This may trigger overlapping fast recovery
periods or more complex retransmission scenarios, which are
difficult to describe by a simple model. We neglect these
effects since they hardly occur for small loss probabilities.

C. SCTP Multistreaming

As shown in Fig. 1, data chunks have to wait in stream
#0’s resequencing queue until the retransmission arrives at the
receiver at t3 = t2+RTT/2, and the waiting times wn depend
on the time D = w0 to detect the packet loss. The number
of data chunks that have to be queued until the retransmission
arrives is Q = b D

d N c. The resequencing delay of the first data
chunk after the lost one is w1 = D − N d. The subsequent
waiting times are w2 = D−2 N d, . . . , wQ = D−QN d. The
mean waiting time is the sum of all wi divided by the mean
number of data chunks between two losses, which is 1/p. The
mean increase of the unidirectional end-to-end delay is thus

W = p

Q∑
i=0

wi = p
(
(Q + 1) ·D − Q (Q+1)

2 N d
)

. (2)

D. SCTP Unordered Transport

Messages with the unordered flag set can be delivered to the
upper layer protocol as they arrive. If all messages are sent in
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Fig. 2. Timeout-based error recovery (1 SCTP stream)

this mode, i. e., w0 = D, w1 = w2 = · · · = 0, eq. (2) yields

W = p ·D . (3)

The same result applies for partial-ordered transport over a
sufficiently large number of streams, i. e., if the stream to be
used for the next message transmission has already recovered
from a potential previous loss (Q = 0). This is approximately
fulfilled for N ≥ M with M =

⌈
D
d

⌉
. In both cases head-of-

line bocking can be avoided completely.

E. Multiple TCP Connections

From a theoretical point of view, the resequencing delay of
one SCTP stream and one TCP connection should be identical,
since both use similar error recovery algorithms. If several
parallel TCP connections are used, each connection has an
independent error recovery, i. e., acknowledgments only refer
to data transmitted over the same connection. As a result,
the time to trigger a fast retransmit is D = RTT + 3 d N
and increases with the number of connections N . The mean
waiting time can obtained by substituting D in (2) with

D = min (RTT + 3 d N, RTO + max (RTT −N d, 0)) .
(4)

F. End-to-end Delays

In the considered scenario, the mean unidirectional end-
to-end delay is RTT/2 + W . Many signaling protocols are
transaction-based and require a reply for each signaling mes-
sage. As a consequence, the important metric is the bidirec-
tional response time (see, e. g., [7]). Furthermore, response
times are easy to measure. Since head-of-line blocking may
occur in both directions, the mean response time follows as

R = RTT + 2 W + δ , (5)

where δ represents the processing time in the end systems.

IV. ANALYTICAL AND MEASUREMENT RESULTS

A. Measurement Setup

In order to measure transport layer delays, we set up the
testbed depicted in Fig. 3. The software emulates a transaction-
based signaling protocol and consists of a load generator and
an echo server. Both were designed to be as simple as possible
to isolate delays caused by the transport protocol from local
processing effects. The load generator generates messages
according to a given interarrival time (IAT) distribution, each
having a constant size (64 octets). Using a round robin strategy,
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messages are distributed over a configurable number of parallel
TCP connections or streams within one SCTP association. The
echo server waits until it has received a complete message
and returns it on the same connection or stream pair. Upon
reception of the echoed message the load generator calculates
the response time and writes it to a log file.

The software is implemented in C and runs under Linux
(kernel version 2.6.15) or Solaris 10. The Linux variant
either uses the “lksctp”-kernel module or standard Linux TCP.
For both protocols the “nodelay” socket options have been
enabled. It should be noted that the SCTP-specific parts of
the source code are much simpler because of SCTP’s message
oriented API. For Solaris, we only present the TCP results. Our
Solaris SCTP measurements are distorted by sporadic longer
stalls of the SCTP association, which seem to occur without
any obvious reason. Measurements were made using two
2.4 GHz Pentium 4 or 500 MHz UltraSPARC IIe computers
connected by 100 Mbps Ethernet to a “NIST Net” network
emulator, which adds a delay of ∆ = 10 ms in each direction
and randomly drops IP packets with a given probability p.

B. Impact of Packet Loss on SCTP

Fig. 4 shows the mean response time as a function of the
packet loss probability p, when SCTP is used as transport
protocol. The load generator is configured to send requests
with neg.-exp. IAT d = 10 ms, corresponding to λ = 100 1/s.
As in all other diagrams, the values have been obtained
by averaging over the transaction response time during a
measurement period of at least 1000 s. Fig. 4 reveals that using
more than one stream can significantly improve the response
time R even for moderate loss probabilities such as p = 2 %.
The difference gets larger for higher p, but such situations will
hardly occur in well-dimensioned signaling networks.

The measurement results match very well the response time
predicted by the analytical model in eq. (5), with a processing
delay assumed to be δ = 0.5 ms. The slight underestimation
for p > 1 % is probably due to the impact of multiple fast
retransmits and timeouts that cannot be neglected for large p.
The cumulative complementary distribution function (CCDF)
for p = 1 % is depicted in Fig. 6. As the number of streams
N gets larger, the CCDF asymptotically approaches the case
of unordered delivery. When N is larger than a certain value
(here: M = 6), unordered delivery and multiple steams have
the same performance. Furthermore, small steps at R = 30 ms

can be observed. Looking at traces reveals that this additional
delay of 10 ms is caused by sporadic bundling of data chunks:
When two subsequent chunks are assembled to one packet, the
first one is delayed by one IAT, i. e., in the mean by d = 10 ms.

C. Impact of Packet Loss on TCP

Fig. 5 presents measurements both for Linux and Solaris
TCP, with the same testbed setup as for SCTP. Unlike one
might expect, the mean response time for TCP is larger than
for a single SCTP stream and differs from our analytical
model. For p < 1 %, the difference is small, but in particular
the Linux response time is larger than predicted. Both TCP
implementations are not able to transport the offered load of
100 messages/s for p > 7 %, which is manifested by socket
buffer overflows. This can be explained by the TCP congestion
control that limits the throughput when losses occur.

The CCDF in Fig. 6 reveals a non-negligible probability
for high delays (for p = 1 %). The 99 % quantile of the
response time is approximately 200 ms. For Solaris TCP, there
is a significant probability for delays of about 500 ms. They
seem to be caused by retransmission timeouts with a minimum
duration of RTO ≈ 500 ms. Linux TCP uses a smaller
minimum value of RTO = RTT + 200 ms [12] and thus
does not suffer that much from long delays. However, there is
a significant probability of small delays. An analysis of traces
shows that Linux sometimes does not send data immediately
to the network, but aggregates them to larger packets, even
though the “nodelay” option is set.

D. Variable Load

In the following, we vary the offered load λ, and we study
multiple TCP connections, too. Figures 7, 8, and 9 present the
mean response time for Linux SCTP, Linux TCP and Solaris
TCP, respectively. The TCP graphs are plotted as a function of
the data rate λeff = λ

N per TCP connection. As to be expected,
multiplexing the total data rate of λ over N TCP connections
results in the same delay as sending λ

N over one connection,
since different TCP connections operate independently. All
three diagrams can be subdivided into three regions:

(1) For small data rates, the response time is increased by
the RTO, which expires before a fast retransmit is triggered.
Here, SCTP performs worst due to its high minimum RTO of
1 s. As λ increases, R increases due to head-of-line blocking,
except for a sufficiently large number of SCTP streams.

(2) For λ > α = 3
RTO (in case of SCTP) or λeff >

α = 3
RTO (for TCP), the fast retransmit allows a faster error

recovery and reduces the end-to-end delay significantly. For
Linux SCTP and Solaris TCP, the measured response time is
rather close to the value predicted by our analytical model,
up to a message rate of about 100 1

s . For Linux TCP, again
an additional delay of about 10 ms can be observed. The TCP
delays are approximately minimal at λeff ≈ µ = 2

√
3

RTT .
(3) The behavior at high data rates differs significantly:

The Linux SCTP delay is close to the RTT when a sufficient
number of streams or unordered mode is used. The maximum
data rate that we could transport with the “experimental” Linux
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SCTP is about λ = 2, 000 1
s . Under Solaris TCP, delays

increase for λeff > 500 1
s . Here the TCP congestion control

seems to limit the sending rate. Our analytical model does
not consider this effect and thus underestimates the response
time. Interestingly, Linux TCP can transport at least four times
this load before delays start to increase. Apparently, the Linux
TCP algorithms trade off delay and throughput.

Summing up, the transport delay of multiple SCTP streams,
or of SCTP in unordered mode, is close to the theoretical
minimum given by our analytical model, whereas using one
or multiple TCP connections can result in significantly larger
delays, in particular for data rates of the order of 100 1

s . For a
given data rate λ, the response time for transport over TCP can
be minimized by using Nopt ≈ λ·RTT

2
√

3
parallel connections.

V. CONCLUSIONS

In this paper, we study the performance of the TCP and
SCTP as transport protocols for transaction-based signaling
protocols. We analyze how the impact of head-of-line blocking
can be mitigated by using several parallel TCP connections,
SCTP multistreaming, or SCTP unordered mode, respectively.
We propose an analytical model for the end-to-end delay of
signaling messages, and we verify it with measurements both
under Linux and Solaris. Our results reveal that signaling
transport over one TCP connection may suffer from significant
delays even for moderate packet loss probabilities, whereas a
small number of SCTP streams or SCTP unordered mode can

avoid this head-of-line blocking. The alternative solution of
multiple TCP connections performs worse in most cases.
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