
Universität Stuttgart
INSTITUT FÜR

KOMMUNIKATIONSNETZE
UND RECHNERSYSTEME

Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn

Copyright Notice
c©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must

be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: +49-711-685-68026, Fax: +49-711-685-67983

email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de

Performance Analysis of the
Quick-Start TCP Extension

Michael Scharf
Institute of Communication Networks and Computer Engineering (IKR)

Universitity of Stuttgart, Germany
michael.scharf@ikr.uni-stuttgart.de

Abstract—Quick-Start is an experimental extension of the
Transmission Control Protocol (TCP) that allows to speed up best
effort data transfers. With Quick-Start, TCP hosts can request
permission from the routers along a network path to send at a
higher rate than allowed by the default TCP congestion control.
The explicit router feedback avoids the time-consuming capacity
probing by the TCP Slow-Start and is therefore particularly
beneficial for underutilized paths with a high bandwidth-delay
product. In this paper, the performance of the Quick-Start TCP
extension is analyzed and the impact of router admission control
strategies is studied. The main contribution is an analytical
model that quantifies the improvement compared to default TCP
Slow-Start. The model is validated by simulation results and by
initial measurements with a Quick-Start implementation in the
Linux operating system. Our results confirm that Quick-Start
can significantly reduce the completion times of mid-sized data
transfers.

I. INTRODUCTION

The Transmission Control Protocol (TCP) is the default
transport protocol for best effort Internet services. Since TCP
is a pure end-to-end protocol, the connection endpoints have
to estimate the path characteristics in order to adapt their
sending rate. However, after connection setup, or e. g. after
long idle periods, it is difficult to determine an appropriate rate
due to lack of information. Traditionally, the TCP congestion
control uses the “Slow-Start” heuristic to probe the available
bandwidth in these cases, but this is a time-consuming pro-
cess, since it can require many round-trip times to reach an
appropriate sending rate.

The Quick-Start extension [1] addresses this issue by using
explicit router feedback. It allows hosts to ask for an initial
sending rate, e. g., during the TCP three-way handshake, and
the routers along the path can approve, modify, or discard
this request. If the Quick-Start request is approved, using a
higher-than-default initial sending rate can significantly speed
up high-speed best effort data transfers over paths with a
large bandwidth-delay product, such as over long-distance
broadband wide area networks, satellite or cellular links.

Even though Quick-Start is only a minor extension of the
TCP congestion control, its deployment has various implica-
tions on the architecture and performance of IP networks.
An initial evaluation of Quick-Start in [2] quantifies the
performance benefits compared to standard TCP and discusses
basic router strategies. Yet, many details and trade-offs are not
discussed in detail there, and the results are based on simu-
lations only. This paper derives analytical approximations for

the performance of Quick-Start. To the best of our knowledge,
this is the first analytical analysis of Quick-Start that quantifies
the performance benefit and that approximates the impact of
router admission control procedures. Although our model is
an initial approach and does not consider all involved effects,
it confirms some of the key findings of [2]. Furthermore,
we report some measurement results that have been obtained
from a new Quick-Start implementation in the Linux TCP/IP
protocol stack, which has been developed in [3].

The rest of this paper is structured as follows: Section II
gives an overview of the Quick-Start TCP extension and re-
lated work. In Section III, an analytical model is presented that
quantifies how much Quick-Start can improve the completion
time of data transfers with limited size, compared to the
standard Slow-Start. Section V discusses design choices for
routers that support the Quick-Start mechanism. In Section VI,
different parametrizations for the router algorithms are studied
analytically and by simulation. The results are verified by mea-
surements with our Linux kernel Quick-Start implementation
in Section VII. Finally, Section VIII concludes the paper.

II. THE QUICK-START TCP EXTENSION

A. Overview

Quick-Start is an experimental TCP extension standardized
by the IETF [1]. With Quick-Start, TCP connection end-points
can rapidly determine an allowed sending rate in cooperation
with the routers on the path, in particular at the beginning of
a data transfer. Thus, Quick-Start is basically a performance
enhancement for elastic best effort transport over paths with
significant free capacity.

Fig. 1 illustrates a Quick-Start request during TCP connec-
tion establishment: In order to indicate its desired sending
rate, Host 1 adds a “Quick-Start request” option to the IP
header. This option includes a coarse-grained specification of
the target rate, encoded in 15 steps ranging from 80 kbit/s to
1.31 Gbit/s. The routers along the path can approve, modify, or
disallow this rate request. Each router that supports the Quick-
Start mechanism performs an admission control and reduces or
discards the request if there is not enough bandwidth available.

If the request arrives at the destination Host 2, the granted
rate is echoed back piggybacked as a TCP option (“Quick-
Start response”). The originator can then detect whether all
routers along the path support Quick-Start and whether all of
them have explicitly approved the request. If not, the default

Router Router
QS request

QS report

QS response

SYN

Rate!

Rate?

Echo

Rate

TotalACK
SYN,ACK

New ACK

transfer
time

Host 2Host 1

IP

IP

IP

TCP

TCP

TCP

algorithms
Standard

pacing

Fig. 1. Illustration of a Quick-Start request during the TCP three-way handshake

congestion control (i. e., TCP Slow-Start) is used to ensure
backward compatibility.

If the Quick-Start request is successful, the originator can
increase its congestion window to a value potentially much
larger than the initial value allowed by [4]. Provided that
Host 2 announces a sufficiently large receive window that
does not restrict the sender, Host 1 can start to send with
the approved rate, using a rate pacing mechanism (see Fig. 1).
A special problem can arise if the receive window larger is
larger than 65,535 byte, since window scaling is not allowed in
segment with the “SYN” flag. A simple workaround is to send
an additional empty acknowledgment after the “SYN,ACK”,
which announces the true receive window, or to modify the
TCP receive window scaling mechanism [5]. After one round-
trip time (RTT), the Quick-Start phase is completed and the
default TCP congestion control mechanisms are used for the
subsequent data transfer.

B. Benefits and Open Issues of Quick-Start

The Quick-Start extension can significantly enhance the
TCP performance over paths with a high bandwidth-delay
product, since it avoids the time-consuming Slow-Start. Simu-
lation results in [2] reveal that the transfer times of moderate-
sized files can be improved by several hundred percent (cf.
Section IV-B). In addition to avoiding initial Slow-Starts,
the Quick-Start mechanism could also be quite useful in the
middle of data transfers, e. g., after longer idle periods, or
in combination with link layer mobility triggers [6]. Quick-
Start can thus complement other new high-speed congestion
control mechanisms that target at environments with a large
bandwidth-delay product (see e. g. [7]).

However, Quick-Start TCP, as any explicit router feedback
approach, comes at some cost: The Quick-Start mechanism
requires support by all routers along a path. As a consequence,
it is difficult to deploy Quick-Start incrementally, and there
are interworking problems e. g. with IP tunnels. Furthermore,
existing middleboxes such as firewalls may drop packets car-
rying Quick-Start options. Quick-Start also causes processing
overhead in routers, even though they do not have to store per-
flow state. Routers also need some knowledge about link layer
characteristics, which could require cross-layer information
exchange, for example for links with variable bandwidth. Con-

cerning security, Quick-Start includes protection mechanisms
against misbehaving routers and receivers, but it is vulnerable
to certain denial-of-service attacks.

There are also open research questions concerning the
interaction with applications, for instance, when to trigger
Quick-Start requests, and how to determine the data rate to
request for. As discussed in [1], [2], reasonable choices could
be made e. g. by knowing the last-mile link capacity. Further-
more, interactive applications could for instance determine the
required bandwidth by taking into account the amount of data
and/or a response time deadline.

As some of these issues require further research, [1] con-
cludes that initial deployment of Quick-Start should be limited
to controlled and trusted environments such as Intranets.

C. Related Work

The Quick-Start TCP extension is a lightweight, coarse-
grained, in-band explicit router feedback mechanism that
rapidly discovers the available bandwidth on a path. A similar
router feedback is already realized by Explicit Congestion
Notification (ECN) [8]. Unlike ECN, Quick-Start does not
target at improving TCP behavior over congested links.

There are numerous other proposals to mitigate the per-
formance limitation of TCP’s Slow-Start. A comprehensive
survey of this related work can be found in [1], [2]. Four
principal approaches can be distinguished: (1) Schemes that
apply bandwidth estimation techniques in order to determine
the available bandwidth, (2) additional function blocks that
share path capacity information, such as a “congestion man-
ager”, (3) explicit feedback from network elements along a
path, and (4) proposals to use an arbitrarily high sending rate
at the beginning of data transfers. The forth category, i. e., the
idea to “stupidly” start sending with a potentially high data
rate, has recently been proposed by [9] and [10]. However,
such a sender behavior can result in severe congestion, and the
impact on networks is not well understood so far. Compared
to this, Quick-Start, which belongs to the third category, is a
much more careful and conservative mechanism.

Ongoing research activities for future “clean slate” Inter-
net architectures include completely new congestion control
schemes that are based on more powerful explicit router feed-
back mechanisms. Such explicit notification can be achieved

either with in-band signaling or with out-of-band signaling.
For instance, the Explicit Control Protocol (XCP) [11], [12]
uses fine-grained, in-band, per-packet feedback from routers
in order to improve performance in networks with a high
bandwidth-delay product. Compared to Quick-Start TCP, these
proposals are more complex to realize and therefore not further
considered in this paper.

As already mentioned, reference [2] examines the perfor-
mance of the Quick-Start mechanism by simulation. Another
recent study [13] analyzes the performance of Quick-Start over
satellite links. It confirms significant benefits for the start-
up behavior of streaming traffic with “TCP Friendly Rate
Control”. Simulations in [6] show that Quick-Start can be
used to improve the TCP performance after vertical handovers.
The analytical analysis in the following section extends and
complements this initial work on Quick-Start performance.

III. ANALYTICAL MODEL

A. Analyzing Short TCP Connections

The performance improvement of Quick-Start can be quan-
tified by analyzing the sojourn time of a given amount of
data after connection setup. Two different factors may limit
the performance of TCP in Slow-Start: First, the throughput
can be affected by a maximum sending window, a limited
Slow-Start threshold, a small receiver advertised window, or
by packet loss. These cases have been analyzed e. g. in [14],
[15]. Second, the TCP throughput is limited once it reaches
the available bandwidth of the end-to-end path. While an
optimized configuration can overcome window restrictions, the
second case imposes a fundamental limitation. Models for the
corresponding performance can be found for instance in [16],
[17]. These models are extended in [18], where a closed-form
expression for file transfer times is given. In the following,
we briefly review some of the findings of the model in [18].
Based on this we then quantify the maximum Quick-Start
performance improvement.

B. Model Assumptions

As shown in Fig. 2, we assume that the end-to-end path can
be characterized by a bottleneck link with a TCP processing
capacity R = L

MTU · r and a minimum round-trip time τ
that incorporates all other path delays. r is the data rate
for IP packets, MTU is the maximum transmission unit
(assumed to be 1500 bytes), and L is the maximum segment
size (1460 bytes). The bandwidth delay product, including the
bottleneck link, thus follows as P = R·τ

L + 1. Note that P , as
well as other variables, is counted in segments of size L. In the
following, we also assume that the initial value of the Slow-
Start threshold and the receive window are larger than P . This
ensures that the throughput is not limited by an unfavorable
TCP configuration.

The TCP behavior in Slow-Start can be modeled by
“rounds” that start when the sender begins the transmission of
a window of packets and that end when an acknowledgment
(ACK) for one or more of these packets arrives [14]–[17]. In
each round i ≥ 1, the sender sends as many data segments

S

τ/2

τ/2 R

τ/2

τ/2

S

S

S

R

R

RBuffer B
Rate r

AA
Rate r Rate r

Access links
Simulation setup:

B

ACKs

"Bottleneck" linkSender Receiver

Rate r

Analytical model:

Fig. 2. Network models in the analysis and in the simulations

as its congestion window W (i) allows. With the so-called
“delayed acknowledgments”, the receiver typically sends an
ACK for every b = 2 data segments (see e. g. [14]). Since
the sender increases its congestion window by one segment
per ACK, the congestion window at round i + 1 follows as
W (i + 1) ≈ (1 + 1

b)W (i) = γ W (i) with γ = 1 + 1
b . If the

sender starts with an initial window w, the window size in
round i, i. e., the maximum amount of data to be sent in that
round, is W (i) = w · γi−1. The amount of data transmitted in
all rounds up to i can be approximated by a geometric series:
M(i) =

∑i
j=1W (j) = w γi−1

γ−1 . For MTU = 1500 bytes,
[4] allows a maximum initial window w = 3.

C. Transfer Times with Slow-Start

Given a certain amount of data, parts of it may be transferred
in Slow-Start rounds. Once the sending window W (i) exceeds
the bandwidth delay product P , the throughput is mainly
limited by the data rate of the path. Further assuming that the
duration of a round is τ + L

R and independent of the window
size, we can determine the Slow-Start transfer time ΓSS(s,R)
of a given amount of data s as follows:

ΓSS(s,R) =
τ

2
+

(
τ +

L

R

)
· ψ︸ ︷︷ ︸

Delay by Slow-Start

+
(
s− L ·M(ψ)

R

)
︸ ︷︷ ︸

Transfer fully utilizing path

. (1)

In this expression, ψ is the index of the last Slow-Start round
that is completely used by the sender. In order to calculate ψ,
two cases have to be considered: First, the sending window
may exceed the bandwidth-delay product P in round κ, i. e.,
W (κ) ≥ R·τ

L + 1. Solving for κ gives:

κ =
⌈
logγ

(
1
w

(
R·τ
L + 1

)) ⌉
+ 1 . (2)

Second, short transfers may not arrive at this point. If the data
is completely transferred in Slow-Start, the number of rounds
ν follows from M(ν) ≥ d s

Le:

ν =
⌈
logγ

(⌈
s
L

⌉
γ−1
w + 1

) ⌉
. (3)

By definition, the last complete round has the index

ψ = min(κ, ν)− 1. (4)

10
3

10
4

10
5

10
6

10
7

Transfer length s [byte]

10
2

10
3

10
4

M
ea

n
to

ta
l t

ra
ns

fe
r

tim
e

T
 [m

s]

Analytical model
Simulation

Slow-Start

Quick-Start

Fig. 3. Transfer times (τ = 100 ms)

10
3

10
4

10
5

10
6

10
7

Transfer length s [byte]

0

1

2

3

4

5

R
el

at
iv

e
pe

rf
or

m
an

ce
 im

pr
ov

em
en

t η

Analytical model
Simulation

τ=10ms

τ=50ms

τ=100ms

τ=500ms

Fig. 4. Improvement by Quick-Start

D. Transfer Times with Quick-Start

With Quick-Start, the data transfer can immediately start
with the data rate q granted by the routers along the path.
The sender uses this data rate during one RTT; afterwards, the
sending rate may be increased up to r by the standard TCP
congestion control procedures. Assuming that the additional
time to fully utilize the path is small, the transfer time can be
approximated by

ΓQS(s,R,Q) =
τ

2
+

{ s
Q if s < Q · τ

τ + s−Q·τ
R else

, (5)

where Q = L
MTU ·q is the achieved TCP throughput during the

rate pacing phase. This formula can be explained as follows:
If s < Q · τ , all data is transferred in the rate phasing phase
of maximum duration τ . If more data has to be transferred,
the data transmission of the remainder is governed by the
default TCP congestion control, which can potentially utilize
the full available bandwidth r. In the best case q ≈ r, i. e.,
if the requested Quick-Start rate is close to the link capacity,
Eq. (5) can be simplified to ΓQS(s,R,Q) ≈ τ

2 + s
R . For q � r,

Eq. (5) may underestimate the real transfer time, since the TCP
congestion control may prevent the sender from immediately
sending with r after having completed the rate pacing phase.

E. Total Transfer Times

For a data transfer from the connection originator to the
server, one has to take into account an additional delay of τ
for the three-way-handshake. The total transfer time is then

T = τ + Γ, (6)

where Γ is either ΓSS(s,R) or ΓQS(s,R,Q). When multiple
connections share the bottleneck link, the sojourn times Γ
could roughly be approximated by extending this model using
M/G/1 or M/G/r processor sharing approximations [16], [17].

IV. PERFORMANCE IMPROVEMENT OF QUICK-START TCP

A. Simulation Methodology

In order to compare standard Slow-Start and Quick-Start
TCP, simulations have been performed with the IKR simula-
tion library, which implements a “NewReno” TCP congestion
control [19]. In order to get an initial understanding of the
performance, we use a simple dumbbell topology with one
shared link, as depicted in Fig. 2. Unless otherwise mentioned,
the data rate of the shared link is rB = 100 Mbps with a
drop-tail buffer of size B = 75000 byte (50 packets). The
minimum round-trip time is τ = 100 ms. A variable number
of senders and receivers is connected by access links with rate
rA = 10 Mbps. The senders realize unidirectional short-lived
data transfers by establishing separate TCP connections, thus
roughly modeling HTTP/1.0-like communication.

The model in our simulation tools implements Quick-Start
according to [1]. For simplicity, we assume in the following
that the senders always try to use the Quick-Start mechanism
during connection setup and request for a data rate of q =
5.12 Mbps, which is the maximum value for the access links.
We use a large maximum receiver window of 10 Mbytes, and
the initial Slow-Start threshold is set to 10 Mbytes, too. These
settings ensure that TCP performance is not restricted in our
setup. As mentioned in [1], we adjust the Slow-Start threshold
after the successful completion of a Quick-Start phase and
set it to two times the allowed Quick-Start sending window.
During a successful Quick-Start phase, packets are sent with
a rate pacing granularity of 1 ms.

In Section VI, the mean transfer size is assumed to be
m = 250 kbyte. In addition to constant transfer sizes, we
also use either Lognormal distributed sizes S with fS(x) =
P [S = x] = 1√

2 π·σ·x · exp
(
− (ln x−µ)2

2 σ2

)
for x > 0, where

µ = 11.9292 and σ = 1.0, or a Pareto distribution with
shape factor α = 1.4, i. e., fS(x) = P [S = x] = α·kα

xα+1 for
x ≥ k = α−1

α m. This workload model represents a simple
interactive application with moderate-sized data transfers that
could probably benefit most from Quick-Start. However, in

estimator

adaptation decision

Resource
estimator
Traffic

Admission and Recent
approvals

In Out
QS req.

Fig. 5. Quick-Start router functions

1
ρ

0

φ

ρθTreshold

F()

1−p

p

Utilization

requests
approved

Recent
q

N(,)σµ

Fig. 6. Success probability derivation

reality, the communication pattern of Web applications may be
more complex, even though Lognormal or Pareto distributions
are predominant in the Web [20]. For simplicity, we assume
Poisson arrivals of data transfers with mean inter-arrival time
1
λ . This assumption is reasonable when data transfers are
issued by a large number of users [17]. Each simulation run
includes 10 batches, each with one million packets, and the
results are presented with 95 % confidence intervals.

B. Comparison of Standard TCP and Quick-Start TCP

First, we study the maximum performance benefit that
Quick-Start can achieve if the path is completely unloaded,
i. e., when only one connection shares the bottleneck. As
example we consider only one access link with rate rA =
10 Mbps, assuming Quick-Start requests for q = 5.12 Mbps.

Fig. 3 shows the total transfer time T as a function of
the transfer size s, both for standard TCP and Quick-Start.
Therein, the steps occur when a new Slow-Start round is
required. Quick-Start significantly speeds up transfers in the
range of 10 kbyte to 1 Mbyte. As expected, the graph has
a small kink at s ≈ Qτ = 64 kbyte. Quick-Start is only
of limited benefit for small sizes s, since transfers can be
completed in just a few round-trip times anyway. Also, Quick-
Start does not significantly improve long bulk data transfer,
where the Slow-Start is only a transient phase.

In Fig. 4, the relative improvement η = TSS(s,RA)
TQS(s,RA) of

Quick-Start over standard Slow-Start is depicted for different
latencies τ . Both our analytical analysis and the simulation
results show that Quick-Start can improve transfer times for
moderate-sized transfers by several 100 %, in particular if the
network latency is high. Our analytical analysis thus confirms
similar empirical findings in [2].

V. ROUTER SUPPORT FOR QUICK-START

A. Required Router Functions

The support of Quick-Start requires additional functions in
the routers, which are shown in Fig. 5: (1) Routers have to
determine the capacity of the outgoing links and keep track
of their utilization. (2) Routers must perform an admission
control, i. e., decide whether to accept a Quick-Start request
and which data rate to grant. And (3), information about
recently approved requests must be stored.

Similar functions are known from measurement-based ad-
mission control for guaranteed Quality-of-Service (QoS) [21].
Yet, unlike such IntServ-like QoS mechanisms, routers sup-
porting Quick-Start are not required to make any guaranteed
reservations of bandwidth. In the following, we briefly evaluate
the design space for the three building blocks, extending the
discussion in [1], [2].

B. Estimation of Available Bandwidth

Quick-Start requires an online estimation of the available
bandwidth on the egress interfaces. The capacity of router in-
terfaces can be determined for instance from the corresponding
network technology. If the capacity is not constant (e. g., on
shared wireless links), this may require cross-layer information
exchange. Nevertheless, given the coarse granularity of Quick-
Start requests, some inaccuracy can be tolerated.

When the link capacity is known, the available bandwidth
can be derived from measurements of the transferred data
volume, either within certain time-slots, or with a window-
based solution [22]. The measurement can be combined with
low-pass filters, such as the exponentially weighted moving
average (EWMA), forecasts, or trend-based approaches [23].
In [2], it is proposed to use an EWMA or a “peak utilization”
estimator. However, parameterizing such smoothing filters is
known to be a non-trivial problem [23]. In the following, we
assume that rate measurements are performed in time intervals
D, and we mainly focus on estimators without EWMA.
A further promising alternative would be active bandwidth
probing techniques, but they are not further studied in this
paper.

C. Admission and Adaptation Decision

The admission control for Quick-Start requests tries to
ensure that the link utilization stays within acceptable limits.
[2] proposes the “target algorithm”, which sets an upper
threshold θ on the link utilization ρ (see Fig. 6). Requests
are approved if the resulting utilization ρ, augmented by the
bandwidth from recent Quick-Start approvals φ, is less than
θ. If a request exceeds θ, the permitted rate is reduced or the
request is dropped. We label this strategy “with reduction”.

An alternative could be an admission control that does not
reduce but deny requests that exceed the available bandwidth.

0 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 2

 0 1 2 1 0 2 0 1 2

RTTmax
Slot duration D

Req A

Req B

Req C

Reserved

Measured utilizationUt
iliz

at
io

n Threshold θ
ρ

Ring buffer for
recent requests

TimeReservation φ

Rate of B correctly measuredNew rate measurement

A
A

A

B
B

B
C C

 C

Fig. 7. Illustration of bandwidth measurement and recent requests history

This “without reduction” strategy would require less router
processing, and it could also give incentives to hosts not to
request for unnecessarily high data rates.

D. Handling Recent Approvals

Finally, routers must keep track of the approved Quick-Start
requests in order to ensure that the output link will remain
underutilized if the additional traffic of earlier Quick-Start
requests arrives. A potential solution is to store temporal per-
flow state, e. g., between the “Quick-Start request” and the
“Quick-Start report” (see Fig. 1). As alternative, [2] proposes
to keep track of the aggregate approved rate over recent rate
measurement intervals. This does not require per-flow state
and is thus more scalable.

The rate measurements and the history of recent approvals
must be coordinated, as illustrated in Fig. 7: When a request
is approved, the granted capacity must be stored until a new
measurement is performed and until it is almost certain that
this sample includes the data rate of the new flow, which
may potentially occupy a significant share of the outgoing link
capacity. This requires rather frequent rate measurements, i. e.,
a not too large value of D. In the example of flow B in Fig. 7, it
takes three rate measurements after the request until the router
can forget the Quick-Start request.

Assuming a worst-case round-trip time RTTmax, the mini-
mum time to store a request is

H ≥ RTTmax +D. (7)

Choosing the parameter RTTmax involves a trade-off: If the
time interval is too small, the router forgets recent rate ap-
provals too quickly and thus may over-subscribe the available
bandwidth. But if RTTmax is too large, the router is too
conservative when approving Quick-Start requests.

We propose to use a ring buffer [24] for the storage of
the recently granted aggregate bandwidth φ, as illustrated in
Fig. 7: Granted data rates are added to all elements of the ring
buffer. Each time a rate measurement is performed, the oldest
element is emptied. Thus, a rate allocation is remembered
during one complete cycle. From this follows the number of
required buffer spaces as dRTTmax

D + 2e.

VI. PERFORMANCE OF QUICK-START OVER SHARED
LINKS

A. Quick-Start Request Success Probability

On shared links, Quick-Start requests may or may not suc-
ceed, depending on the current load, other competing requests,
and the admission control procedures. In the following, we
analyze the “target algorithm” and approximate the success
probability of Quick-Start requests as a function of the most
important parameters. We start with the case that requests are
not reduced. Then, we show how the analysis can be extended
to the “with reduction” strategy.

One key challenge for the analysis is the online rate estima-
tion: Both the measured traffic rate u and the corresponding
link utilization ρ = u

r typically vary on macroscopic and
on microscopic scale. Even under a stationary offered load,
subsequent rate measurements with a fine time granularity D
can differ significantly, and the measured load ρ thus follows
a distribution function Fρ(x).

The “target algorithm” will approve a request for rate q if
the measured link utilization ρ, plus the normalized request
rate and previous approvals, is not larger than threshold θ, up
to which the link is considered as underutilized. As a conse-
quence, the success probability p of a Quick-Start request for
rate q is given by the probability that θ is not exceeded. Fig. 6
illustrates that there is the following relationship between the
success probability p and the distribution function Fρ(x) of
the measured link utilization:

p(q) = Fρ

(
θ − q

r − φ(H)
)
. (8)

φ(H) is the relative amount of capacity that has been allocated
to Quick-Start in the last time interval H = RTTmax +D.

Volume-based rate measurements calculate u from the
amount of data per time D. Thus, u corresponds to the number
of stochastic arrivals within a given time. Even though the
preconditions of the central limit theorem are not completely
fulfilled here, one can assume that the measured utilization ρ
is approximately normal distributed with mean µ and variance
σ: Fρ = N(µ, σ). In case of an underutilized link, the mean µ
is identical to the offered load, while the variance σ depends
on the arrival traffic pattern and the traffic metering.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Admission threshold θ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
ui

ck
-S

ta
rt

 s
uc

ce
ss

 p
ro

ba
bi

lit
y

p

Analytical model
Simulation

Without

With request reduction

reduction

Mean

µ=0.2
load

Fig. 8. Success probability for different thresholds (RTTmax = 100 ms)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Admission threshold θ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
ui

ck
-S

ta
rt

 s
uc

ce
ss

 p
ro

ba
bi

lit
y

p

Analytical model
Simulation

Without

With request

reduction

Mean

µ=0.2
load reduction

Fig. 9. Success probability for a conservative setting (RTTmax = 500 ms)

If the arrival rate λ and the requested data rate q are
known, the Quick-Start success probability can be determined
by solving Eq. (8). However, the aggregated utilization φ(H)
depends on the success probability of previous requests, too.

In the following, we use a simple heuristic to get an iterative
solution: Let the random variable Z be the number of recent
requests in time interval H , and suppose that φ is zero at the
beginning of time interval H . Then, for z = 0 the success
probability is p0(q) = Fρ

(
θ − q

r

)
. If z ≥ 1 requests of size

q have been granted within H , the aggregated bandwidth is
φ = q

r ·
∑z−1

i=0 pi(q). The success probabilities pz(q) can thus
be determined by recursion:

pz(q) = Fρ

(
θ − q

r −
q
r

∑z−1

i=0
pi(q)

)
. (9)

In case that Quick-Start requests arrive with negative-
exponential inter-arrival time, Z is Poisson distributed:
fZ(x) = P [Z = x] = (λ H)x

x! exp(−λH). The mean Quick-
Start success probability can then be derived as

p(q) =
∞∑

i=0

fZ(i)·pi(q) =
∞∑

i=0

(λ H)i

i! exp(−λH)·pi(q) . (10)

For the case that request adaptation is enabled (“with
reduction”), we consider in the following only a possible
reduction by factor two. Similar to Eq. (8), the probability
that half of the requested bandwidth is granted follows as:

p(q
2) = Fρ

(
θ − q

2 r − φ (H)
)
− p(q) . (11)

Note that one could calculate the success probability of further
reductions in a similar way. Now, the success probabilities p(q)
and p(q

2) can be derived by using two iterations for Eq. (8)
and (11), similar to the procedure explained previously.

B. Comparison with Simulation Results

In order to study the impact of the parameters θ and H ,
we now consider the setup described in Section IV-A. In this
setup, the mean load on the shared link is µ = S·λ

rB
= 0.2.

This means that there is considerable bandwidth available for

Quick-Start. For D = 100 ms, the measured deviation of the
load is σ ≈ 0.1, i. e., Fρ ≈ N(0.2, 0.1). We first use constant
file transfers of size m = 250 kbyte.

Figure 8 depicts the Quick-Start success probability p =
p(q)+p(q

2)+. . . as a function of the threshold θ for RTTmax =
100 ms. If θ is less than the mean utilization µ = 0.2, hardly
any Quick-Start requests is successfully (approved rate > 0).
But as soon as θ is slightly larger than the mean utilization,
many Quick-Start request get approved. As to be expected, the
success ratio is much larger if request reduction is allowed.
Figure 8 reveals a close match of our analytical model and
the simulation results.

However, our model is not precise in all cases: Fig. 9 shows
result for the same setup, except that the minimum time to
remember requests is now RTTmax = 500 ms. Because of
this conservative assumption about the maximum round-trip
time, the granted capacity is reserved for a longer time H .
This significantly reduces the Quick-Start success probability.
The comparison of analysis and simulation shows that our
model does not accurately predict the success probability if
the admission threshold θ is slightly larger than µ. Under these
constraints, a more complex modeling might be needed.

C. Impact on TCP Transfer Times

The transfer times without and with Quick-Start follow from
Eq. (6). Without request reduction, the mean transfer time of
a certain amount of data s is

T ≈ p(q) · TQS (s,RA, Q) + (1− p (q)) · TSS (s,RA) , (12)

where p(q) is the success probability and RA = L
MTU · rA.

If the router uses the “with reduction” strategy, one has to
add further summands of the form p(q

2) ·TQS

(
s,RA,

Q
2

)
, etc.

For random transfer sizes S with distribution fS(x), the mean
transfer time could be determined from an integration over
Eq. (12).

Figure 10 depicts T as a function of the threshold θ for
RTTmax = 100 ms. We only consider the case “with request
reduction” here. Again, if θ is less than the mean utilization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Admission threshold θ

300

400

500

600

700

800

900

1000

1100

1200

1300

M
ea

n
to

ta
l t

ra
ns

fe
r

tim
e

T
 [m

s]

Analytical model (const.)
Simulation (constant)
Simulation (lognormal)
Simulation (pareto)

Slow-Start

Quick-Start
All

All

Analytical
model

Simulations

Fig. 10. Impact of the threshold on transfer times

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mean load µ

300

400

500

600

700

800

900

1000

1100

1200

1300

M
ea

n
to

ta
l t

ra
ns

fe
r

tim
e

T
 [m

s]

QS, slotted measurements
QS, EWMA estimator
Standard TCP

D=10ms

D=1000ms

D=100ms

Quick-Start enabled

Fig. 11. Comparison of different rate measurement methods

0.2, the mean transfer time T is large, because hardly any
Quick-Start requests gets approved. If θ is set to a value larger
than the mean utilization, successful Quick-Start requests can
significantly reduce the mean transfer time.

These results show that Quick-Start can result in a sig-
nificant performance benefit on underutilized links even if
only part of the link capacity are granted to Quick-Start. This
outcome is quite insensitive to the transfer size distribution.
The simulation results also match rather well to our analytical
approximation, except for some constant offset. The reason for
this offset is probably that the actual round-trip time over the
shared link is larger than τ , which is not considered by the
model in Section III.

D. Impact of Different Rate Estimators

We also study of the impact of different rate measurement
techniques: Fig. 11 presents the results for the transfer time
as a function of the offered load µ = S·λ

rB
, which is varied by

changing λ. The threshold θ is here set to 0.95, and the transfer
sizes are Lognormal distributed. As to be expected, for a rather
high utilization it makes no significant difference whether to
use Quick-Start or standard TCP, since only few Quick-Start
request get approved. Note that θ = 0.95 is a rather aggressive
setting that admits Quick-Start requests even if the link is
already highly loaded. For low or moderate utilization, there is
again a considerable performance benefit. As to be expected,
one can observe that the performance improves for more
frequent rate measurements, i. e., small D, because the storage
time of recent requests is smaller and the admission control
is less conservative. However, more frequent measurements
come along with the drawback that the measured load ρ may
significantly fluctuate and thus require further postprocessing.
The simulation results shown in Fig. 11 reveal that using
an exponential-weighted moving average with weight factor
0.1 tends to slightly improve the overall performance, but the
difference is not significant.

VII. MEASUREMENTS UNDER LINUX

A. Implementation Overview

In [3], the Linux kernel has been extended to support
the Quick-Start extension. This implementation within a real
TCP/IP protocol stack allows to test Quick-Start in combina-
tion with real applications and in real network testbeds. The
kernel patch completely implements Quick-Start for IP ver-
sion 4 according to [1], [5], and it is currently based on Linux
kernel version 2.6.20.11. The implemented features include
the required host functions, i. e., processing of IP and TCP
options, modification of TCP congestion and flow control,
and the rate pacing mechanism. Also, the required router
functions have been added to the Linux kernel IP forwarding,
including metering of the current traffic over egress interfaces
and admission control for Quick-Start requests. Fig. 12 gives
an overview of the resulting modifications of the kernel code.
More details about the Quick-Start implementation can be
found in [3] and [25].

B. Measurement Testbed Setup

In the following, we report some initial measurements that
have been obtained with the Linux Quick-Start implementa-
tion, in order to verify the analytical and simulation results
presented in Section III. We consider a very similar setup,
i. e., a certain amount of data is transferred after the connection
setup with or without a Quick-Start request over an unloaded
link. Different to Section III, now the connection originator
receives data from the server. For this data transfer from the
server to the client, no special mechansims are required to
avoid interactions of Quick-Start and the TCP flow control [5].

The scenario is also illustrated in the message sequence
chart in Fig. 13. Both client and server are realized as C
programs and use straightforward socket calls. The server
activates Quick-Start by setting a new socket option. The
“server response time” between the completion of the three-
way-handshake and the end of the data transfer can be easily
measured within the client application program, without a need

Config

Device driver

IP

Application

TCP

ip_rcv

net_rx_action

Routing

ip_local_deliver

Analysis

Socket interface

Sysctl config

Sysctl config

ip_finish_output

tcp_send_msg

dev_queue_xmit

tcp_write_xmit

tcp_v4_rcv Send ACK tcp_transmit_skb

ip_forward_finish

ip_queue_xmit

ip_forward

Fast/slow path State

do_tcp_setsockopt

Handle SYN Cong.
control

send_packet
ip_build_and_

Options Options Options

Flow control

New sysctlActivate QS

Traffic metering,
adm. control

Rate
pacing

Metering, adm.

Hist.

QS TTL decr.

Fig. 12. Overview of Linux kernel Quick-Start implementation

QS request
IP TCP

QS report
IP TCP

QS response
IP TCP

Client Server

SYN,ACK

SYN

ACK

time

Server
response

Rate?

Rate!

Ethernet switch
10 Mbps

Fig. 13. Measurement scenario

for clock synchronization among the hosts. Each response time
value is the average of ten consecutive measurements.

Client and server are Linux computers running the modified
kernel. The kernel scheduler runs with HZ = 1000 1

s , from
which follows a rate pacing granularity of 1 ms. Client and
server are interconnected by a r = 10 Mbps Ethernet switch,
and each of them uses the “NetEm” [26] network emulation
at the Ethernet interface to add a delay of 50 ms. As a
consequence, the minimum RTT is again τ = 100 ms. If
Quick-Start is enabled, the server asks for an initial data rate
of q = 5.12 Mbps, which is the maximum possible request
rate in this setup. As the Linux kernel supports different TCP
congestion control algorithms, we utilize both the “Reno” [27]
and the “Cubic” [28] variant. As recommended in [5], the
socket buffers have been increased to a large value (8 Mbyte)
in order to avoid any limitation by the TCP flow control.

C. Quick-Start Measurement Results

Figure 14 shows the measured server response times both
without and with Quick-Start. As to be expected, the result is
very similar to the simulation results in Fig. 3. However, there
are a couple of reasons why the absolute values slightly differ:
First, the definition of the server response time T ′ is different,
as one can see from Fig. 13. With the analytical model from
Section III, T ′ can be expressed as follows:

T ′ =
τ

2
+ Γ (13)

Γ is either ΓSS(s,R) or ΓQS(s,R,Q). Second, Linux uses by
default a so-called “Quick ACK” mechanism that acknowl-
edges every segment during the beginning of Slow-Start [27].
This heuristic speeds up the Slow-Start, but it is not standard
compliant. In the analytical model, b = 1 has to be used in
order to take this into account. And finally, the MSS is slightly
smaller (L = 1452 byte) because Linux uses by default the
TCP timestamps option in every segment.

The comparison of Fig. 3 and Fig. 14 reveals that in the
measurement the performance improvement of Quick-Start is
smaller, mainly because of the “Quick ACK” mechanism. Nev-
ertheless, mid-sized data transfers are accelerated at least by a
factor of two. There is no significant impact of the congestion
control algorithm, which is reasonable, since the behavior of

“Reno” and “Cubic” is very similar after connection setup.
The measurement results are slightly larger than the values
given the analytical model of Eq. (13). This can be explained
by small additional processing efforts that are not considered
by the analytical model.

Finally, Figure 15 presents a trace of the data rates with
Slow-Start or Quick-Start, respectively. The data rate values
have been obtained by evaluating a packet trace and summing
up the length of the corresponding IP packets within slots of
duration ∆ = 100 ms. As one can see, with Slow-Start it takes
at least one second to (almost) fully utilize the link capacity.
Quick-Start is much faster and only requires about 300 ms to
ramp up, part of which is caused by the temporary rate pacing
with q = 5.12 Mbps.

Summing up, our initial measurement results clearly show
that Quick-Start is a promising solution to improve transfer
times, even though they have been obtained from a rather
simple testbed setup. Further studies are needed to evaluate
Quick-Start in a wider range of scenarios.

VIII. CONCLUSIONS AND FUTURE WORK

Quick-Start is a TCP extension that allows hosts to co-
operate with the routers along a path in order to determine
a large initial sending rate. This paper studies the perfor-
mance of Quick-Start compared to standard TCP Slow-Start
by analytical models, by simulation, and by measurements
in the Linux TCP/IP stack. We also consider different al-
gorithms in routers and quantify the performance impact of
key configuration parameters. Our results confirm that Quick-
Start can significantly improve transfer times without requiring
per-flow state in routers. Our analytical approximations could
also be used to dimension the measurement-based admission
control in the routers. Future work will include evaluations
with more realistic application communication patterns and
more complex network setups.

ACKNOWLEDGMENTS

This work was partly funded by the German Research
Foundation (DFG) through the Center of Excellence (SFB)
627. The author would like to thank Haiko Strotbek for his
work on the Quick-Start implementation used in Section VII.

10
3

10
4

10
5

10
6

10
7

Transfer length s [byte]

10
2

10
3

10
4

S
er

ve
r

re
sp

on
se

 ti
m

e
T

’ [
m

s]

Analytical model
Measurement (Reno)
Measurement (Cubic)

Slow-Start

Quick-Start

Fig. 14. Server response times (τ = 100 ms)

0 0.5 1 1.5 2 2.5 3 3.5 4
Time after connection setup [s]

0

1

2

3

4

5

6

7

8

9

10

D
ow

nl
oa

d
IP

 d
at

a
ra

te
 [M

by
te

/s
]

Measurement (Reno)
Measurement (Cubic)

Slow-Start

Quick-Start

Fig. 15. Trace of data rates after connection setup

REFERENCES

[1] S. Floyd, M. Allman, A. Jain, and P. Sarolahti, “Quick-start for TCP
and IP,” IETF RFC 4782 (experimental), Jan. 2007.

[2] P. Sarolahti, M. Allman, and S. Floyd, “Determining an appropriate
sending rate over an underutilized network path,” Computer Networks,
vol. 51, no. 7, pp. 1815–1832, May 2007.

[3] H. Strotbek, “Design and implementation of a TCP extension in the
Linux kernel,” Diploma thesis (in German), University of Stuttgart, IKR,
May 2007.

[4] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s initial
window,” IETF RFC 3390 (proposed standard), Oct. 2002.

[5] M. Scharf, S. Floyd, and P. Sarolahti, “Avoiding interactions of quick-
start TCP and flow control,” IETF Internet Draft, work in progress, July
2007.

[6] P. Sarolahti, J. Korhonen, L. Daniel, and M. Kojo, “Using quick-start to
improve TCP performance with vertical hand-off,” in Proc. 31st IEEE
Conf. on Local Computer Networks, Nov. 2006, pp. 897–904.

[7] Y.-T. Li, D. Leith, and R. N. Shorten, “Experimental evaluation of
high-speed congestion control protocols,” to be published in IEEE/ACM
Transactions on Networking, 2007.

[8] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit
congestion notification (ECN) to IP,” RFC 3168 (proposed standard),
Sept. 2001.

[9] D. Liu, M. Allman, S. Jin, and L. Wang, “Congestion control without
a startup phase,” in Proc. 5th International Workshop on Protocols for
Fast Long-Distance Networks (PFLDnet2007), Feb. 2007.

[10] B. Raghavan and A. C. Snoeren, “Decongestion control,” in ACM
SIGCOMM Workshop on Hot Topics in Networks (Hotnets-V), Nov.
2006.

[11] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in Proc. ACM SIGCOMM, Aug.
2002.

[12] A. Falk, Y. Pryadkin, and D. Katabi, “Specification for the explicit
control protocol (XCP),” IETF Internet Draft, work in progress, July
2007.

[13] A. Sathiaseelan and G. Fairhurst, “Use of quickstart for improving the
performance of TFRC-SP over satellite networks,” in Proc. International
Workshop on Satellite and Space Communications, Sept. 2006.

[14] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP latency,” in
Proc. IEEE INFOCOM, Mar. 2000.

[15] B. Sikdar, S. Kalyanaraman, and K. S. Vastola, “Analytic models for the
latency and steady-state throughput of TCP Tahoe, Reno, and SACK,”
IEEE/ACM Transactions on Networking, vol. 11, no. 6, pp. 959–971,
2003.

[16] A. Riedl, M. Perske, T. Bauschert, and A. Probst, “Investigation of the
M/G/R processor sharing model for dimensioning of IP access networks
with elastic traffic,” in First Polish-German Teletraffic Symposium, Sept.
2000.

[17] S. Ben Fredj, T. Bonald, A. Proutiere, G. Régnié, and J. W. Roberts,
“Statistical bandwidth sharing: A study of congestion at flow level,” in
Proc. ACM SIGCOMM, Aug. 2001.

[18] S. Bodamer, “Verfahren zur relativen Dienstgütedifferenzierung in IP-
Netzknoten,” PhD thesis (in German), University of Stuttgart, IKR, 2004.

[19] “IKR simulation library,” http://www.ikr.uni-stuttgart.de/IKRSimLib/.
[20] A. B. Downey, “Lognormal and Pareto distributions in the Internet,”

Computer Communications, vol. 28, no. 7, pp. 790–801, 2005.
[21] L. Breslau, S. Jamin, and S. Shenker, “Comments on the performance

of measurement-based admission control algorithms,” in Proc. IEEE
INFOCOM, Mar. 2000.

[22] R. Martin and M. Menth, “Improving the timeliness of rate mea-
surements,” in 12th GI/ITG Conference on Measuring, Modelling and
Evaluation of Computer and Communication Systems, Sept. 2004.

[23] L. Burgstahler and M. Neubauer, “New modifications of the exponential
moving average for bandwidth estimation,” in 15th ITC Specialist
Seminar, July 2002.

[24] L.-O. Burchard, “Analysis of data structures for admission control of
advance reservation requests,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 3, pp. 413–424, 2005.

[25] M. Scharf and H. Strotbek, “Experiences with implementing quick-start
in the Linux kernel,” Presentation at IETF 69, Chicago, IL, USA, July
2007.

[26] S. Hemminger, “Network emulation with NetEm,” in Proc. Australia’s
National Linux Conference (LCA), Apr. 2005.

[27] P. Sarolahti and A. Kuznetsov, “Congestion control in Linux TCP,” in
Proc. USENIX Annual Technical Conference, June 2002.

[28] I. Rhee and L. Xu, “Cubic: A new TCP-friendly high-speed TCP
variant,” in 3rd International Workshop on Protocols for Fast Long-
Distance Networks (PFLDnet2005), Feb. 2005.

