Exploiting the Efficiency of Generational Algorithms
for Hardware-Supported Real-Time Garbage Collection

Sylvain Stanchina
sylvain.stanchina@ikr.uni-stuttgart.de

Matthias Meyer
matthias.meyer@ikr.uni-stuttgart.de

Institute of Communication Networks and Computer Engineering
University of Stuttgart
Pfaffenwaldring 47
70569 Stuttgart, Germany

ABSTRACT

Generational garbage collectors are more efficient than their non-
generational counterparts. Unfortunately, however, generational al-
gorithms require both write barriers and write barrier handlers and
therefore degrade worst-case performance.

In this paper, we present novel hardware support for generational
garbage collection. In contrast to previous work, we introduce a
hardware write barrier that does not only detect inter-generational
pointers, but also executes all related book-keeping operations en-
tirely in hardware. For the first time, write barrier detection and
handling occur completely in parallel to instruction execution, so
that the runtime overhead of generational garbage collection is re-
duced to near zero.

For evaluation purposes, we extended a system with hardware-
supported real-time garbage collection with our hardware support
for generational garbage collection. Measurements of Java pro-
grams on an FPGA-based prototype show that the generational ex-
tensions reduce the total duration of garbage collection activities
by a factor of 5 and the memory traffic caused by the collector by a
factor of 4 on average.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors — Memory Man-
agement (Garbage Collection)

General Terms

Design, Languages, Measurement, Performance, Experimentation

Keywords

Real-Time Garbage Collection, Generational Garbage Collection,
Write barrier, Object-Based Processor Architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’07 March 11-15, 2007, Seoul, Korea

Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

1. INTRODUCTION

In real-time systems, garbage collection must be performed con-
currently with application execution. However, the concurrent exe-
cution of collector and application requires synchronization mech-
anisms that prevent the application from interfering with the col-
lector’s work and ensure that no objects are prematurely reclaimed
[16]. Usually, these synchronization mechanisms, be it for read or
write barriers, for incremental compaction, or for mutual exclusion,
are implemented in software by compiler-inserted code sequences.
Yet, this kind of synchronization shows three major drawbacks.
First, the synchronization code inflates the program code. Second,
it slows down application execution. Third and finally, the syn-
chronization code introduces strong dependencies of the compiled
application code from the particular garbage collection algorithm.

Generally, garbage collectors for real-time systems trade syn-
chronization overhead for garbage collection granularity. If incre-
mental algorithms are to bound garbage collection pauses to mil-
liseconds, they will suffer from prohibitive synchronization costs.
At the other extreme, generational garbage collectors do not reduce
worst-case pause lengths, but get by with moderate synchroniza-
tion.

Most problems of implementing garbage collection for real-time
systems are inherent to the sequential nature of software. In con-
trast, hardware has the potential to operate in parallel. Motivated
by this insight, Meyer proposed a novel RISC processor architec-
ture that provides the basis for efficient garbage collection and syn-
chronization in hardware [5]]. In a first proof-of-concept design,
he realized Baker’s incremental copying algorithm with extensions
for incremental compaction. Thanks to synchronization in hard-
ware, his system is able to predictably bound any garbage collec-
tion pause to less than 500 clock cycles. In addition, and in contrast
to software implementations, garbage collection needs no compiler
support and implies a small amount of runtime overhead only [6].

Since the collector used in this system is based on a standard
copying algorithm, it must copy all live objects in every collection
cycle. To address this issue, generational algorithms concentrate
their effort on the region of the heap where objects are most likely
to die.

In this paper, we show that it is possible to combine the fine-
graindness of Meyer’s initial implementation with the efficiency of
a generational algorithm. Furthermore, we show that the additional
runtime overhead of generational garbage collection can be reduced
to near zero by realizing both the write barrier and, for the first time,

the corresponding book-keeping of inter-generational pointers by
means of relatively simple hardware.

The rest of this paper is organized as follows: Section [2] intro-
duces our initial system with hardware-supported real-time garbage
collection. Next, Section [§] provides the basics of generational al-
gorithms, and Section [d] describes our novel hardware support for
generational garbage collection. Section E] presents experimental
results that we obtained from our prototype. Finally, Section [6|dis-
cusses related work, and Section [7] provides a conclusion.

2. INITIAL SYSTEM

Garbage collection, although recognized as indispensable for soft-
ware quality, is frequently considered cumbersome because of its
negative side-effects, including runtime overhead, memory over-
head, and disruptive pauses. In an ideal garbage-collected system,
objects would be allocated when required and simply vanish with-
out any overhead as soon as they are no longer needed. Motivated
by this vision, Meyer proposed and realized an object-based pro-
cessor for real-time embedded systems [5]. This processor com-
pletely abstracts from memory management at the assembly lan-
guage level and thereby allows the realization of garbage collection
as well as all garbage-collection-related synchronization mecha-
nisms completely in hardware. To exploit this potential, the pro-
cessor is supplemented by a garbage collection coprocessor that
reclaims memory behind the scenes and completely in parallel to
application processing (Figure [T)).

This section introduces the characteristics of both main proces-
sor and garbage collection coprocessor and shows how the syn-
chronization mechanisms for hard real-time garbage collection are
efficiently realized in hardware.

Main <)::>
Processor <):‘l>
Cache <)I‘I>

= £ = £

’ Memory Controller ‘

Garbage
Collection
Coprocessor

Figure 1: System overview

2.1 Main Processor

In order to perform exact garbage collection in hardware, objects
and pointers must be known at the hardware level. For this reason,
the main processor is based on an object-based architecture. Rather
than using plain addresses, load and store instructions access mem-
ory by means of pointer/index pairs. Objects are created with a
dedicated allocate instruction. However, there is no instruction to
delete objects. The architecture relies on a hidden garbage collector
that recycles memory in the background.

Pointers are identified by a strict separation of pointers and non-
pointer data. The processor architecture ensures this separation by
three mechanisms. First, each object is split into two dedicated
areas, one for pointers, the other for non-pointers. Two object at-
tributes T and & describe the size of the pointer area and the data
area, respectively. They are stored in an object header that is invis-
ible at the assembly language level. Each area realizes a separate
index space starting at zero (Figure [2). Second, the processor’s
register set is split into a pointer register set and a data register set.

Third, separate instructions are provided for handling pointers and
non-pointer data. Regarding load and store instructions, pointer
load and pointer store instructions implicitly target the pointer area
of an object, while load and store instructions for non-pointers im-
plicitly target the data area.

| attributes | pointer area data area

(=5 |77 /0|0)

0 1 n—1 0 1 5—1
@ data word

pointer word

Figure 2: Object layout

In order to ensure the integrity of pointers, it is not possible to
transfer the contents of a data register to a pointer register or vice-
versa. Furthermore, range checking ensures that load and store in-
structions never violate the bounds of the respective area.

The implementation of the processor is based on a classical pipe-
lined RISC design and extended to efficiently handle objects and
their attributes (Figure[3). The main extensions are as follows: In
the decode stage, the register set is split into 16 data registers and
16 pointer registers. In the execute stage, the processing units are
split into an arithmetic logic unit (ALU) that performs standard data
operations targeting data registers, a pointer generation unit (PGU)
that performs operations targeting pointer registers, and an address
generation unit (AGU) that processes pointers and indices to gen-
erate addresses for the data cache in the memory stage. For each
memory access, the AGU requires the object attributes Tt and & for
address computation and range checking. Therefore, each pointer
register is supplemented with attribute registers. After a pointer
has been loaded from the data cache in the memory stage, the cor-
responding attributes are loaded from an attribute cache in a sub-
sequent pipeline stage. This way, the loading of attributes is fully
pipelined and, in the common case of cache hits, the load pointer
instruction effectively completes in a single clock cycle.

Fetch Decode Execute Memory Attribute
Pointer AGU
Registers
Data Attribute
Instructi Registers Dat Cache
nstruction g PGU ata

Cache Cache
Decoder
ALU Read
Barrier

Figure 3: Main processor pipeline

2.2 Garbage Collection Coprocessor

In order to perform memory reclamation in parallel to application
execution, the initial system takes advantage of a small on-chip
garbage collection coprocessor that is tightly coupled to the main
processor.

This coprocessor is micro-programmable and designed to effi-
ciently trace and copy objects and to handle attributes. As garbage
collection algorithms exhibit poor temporal locality, the collector
does not use a cache, but is directly connected to the memory con-
troller (Figure[I). To exploit the spatial locality of accesses, it pro-
vides burst buffers that take advantage of efficient burst memory
transfers.

The proof-of-concept collector of the initial system targets hard
real-time applications and is based on Baker’s copying algorithm
with Steele’s extensions for fine-grained lazy copying [2].

2.3 Synchronization Mechanisms

Thanks to the tight coupling of processor and collector, all synchro-
nization mechanisms for real-time garbage collection are efficiently
realized in hardware.

The first synchronization mechanism ensures Baker’s tospace in-
variant and is realized by a read barrier that inspects every pointer
load. This read barrier is directly inserted into the attribute stage of
the main processor pipeline (Figure[3). Both read barrier checking
and read barrier fault handling are entirely realized in hardware [7].

The second mechanism ensures cache coherency. The collec-
tor inspects both the data and the attribute cache and flushes cache
lines when necessary. Furthermore, a cache line locking mecha-
nism guarantees exclusive access to objects.

Third, the collector can access the processor’s pointer registers
for root-set scanning. In addition, the collector is able to temporar-
ily stop the processor to protect critical regions in the microcode.

Finally, incremental compaction is realized by dedicated circui-
try in the AGU that dynamically determines whether the fromspace
original or the tospace copy of an object is to be accessed.

By design, none of the synchronization mechanisms described
above suspends application execution for more than a few hundreds
clock cycles [6].

3. GENERATIONAL COLLECTION

Generational algorithms exploit the fact that most objects become
garbage soon after they have been created [4]]. For this purpose,
they divide the heap into two or more generations and concentrate
their effort on the youngest generation, i.e. the region of the heap
where objects are most likely to die. Since the young generation
is a small subset of the heap only, the time required for collecting
the young generation (a minor collection) is much shorter than the
time for collecting the entire heap (a major collection). This way,
generational algorithms reduce the duration of the majority of col-
lection cycles and significantly increase the efficiency of garbage
collection.

In order to process the young generation independently of older
generations, generational algorithms have to keep track of so-called
inter-generational pointers, i.e. of pointers in old objects that refer
to young objects. For this purpose, they use a write barrier to in-
spect every pointer store instruction whether it is about to write a
pointer to a young object into an old object. If so, the collector has
to consider that pointer as part of the root set for subsequent minor
collections.

The realization of write barriers for generational collectors faces
two challenges: First, the write barrier check itself must be imple-
mented as efficiently as possible in order to keep the code-size and
runtime overhead small. Second, the book-keeping procedure in-
voked on each write barrier fault must be efficient as well. In soft-
ware, generational collectors have to trade runtime overhead for
book-keeping granularity. Known implementations considerably
differ in their granularity, ranging from Ungar’s fine-grained re-
membered set [[15]] to Moon’s page marking method [8]] that merely
records inter-generational pointers on a virtual memory page basis.

Apart from the write barrier, implementations must address the
problem of duplicates in their book-keeping structures. Duplicates
potentially blow up the collector’s internal data structures and in-
crease the time for root set processing of minor collections. Avoid-
ing duplicates, however, is expensive since it usually involves search
operations.

4. NOVEL HARDWARE SUPPORT

In this section, we extend the initial system with novel hardware
support for generational garbage collection.

4.1 Design Considerations

As described in the previous section, synchronization for genera-
tional garbage collection depends on two basic mechanisms only:
a write barrier that detects inter-generational pointers, and a book-
keeping method for these pointers. Like all synchronization mech-
anisms in the initial system, these new mechanisms are efficiently
realized in hardware.

For the book-keeping of inter-generational pointers, we use a re-
membered set, i.e. an array of references to old objects containing
young pointers. A remembered set features a finer granularity than
page or card marking techniques. Furthermore, a remembered set
does not depend on virtual memory or structures like bitmaps or
indirection tables.

To prevent duplicates in the remembered set, we add a supple-
mentary one-bit tag (the so-called r-bir) to each object. This bit
is stored together with the attributes in each object’s header and
will be set as soon as the corresponding object is included in the
remembered set. Since both the main processor and the collector
have access to object attributes, they can easily determine whether
an object is already in the remembered set or not.

The rest of this section describes the implementation of the re-
membered set, the write barrier, and extensions to the coprocessor.

4.2 Implementation of the Remembered Set

The remembered set is stored in main memory, apart from the heap,
as a single array of pointers.

Both the write barrier handler and the garbage collection copro-
cessor access the remembered set in a sequential way. To take ad-
vantage of the resulting spatial locality, processor and collector, in-
stead of directly accessing the remembered set, use small on-chip
FIFO buffers (Figure[d). These buffers connect to the memory con-
troller and access memory by means of efficient burst transfers. A
simple control circuitry monitors the level of both buffers and initi-
ates burst transfers when necessary. Thanks to these buffers, all op-
erations in conjunction with the remembered set can be performed
in a single clock cycle, provided that the read buffer is not full, or
the write buffer is not empty, respectively. Because accesses from
the write barrier handler and the coprocessor are rarely clustered,
these two conditions are almost always met.

from processor to/from collector

+—l

control
logic

'

read buffer

write buffer

r

to/from memory controller

Figure 4: Remembered set buffers

4.3 The Write Barrier

The write barrier detects inter-generational pointers generated by
the processor and inserts them into the remembered set. Accord-
ingly, the implementation of the write barrier can be split into two
parts: detection and handling.

4.3.1 Detection

The following conditions must hold to get a write barrier fault:

1. the instruction is a pointer store instruction;

2. the written pointer refers to a young object;

3. the stored-into object belongs to the old generation;

4. the stored-into object isn’t already in the remembered set.

When processing a pointer store instruction, all information re-

quired to check for these four conditions is available in the pro-
cessor’s memory stage. Thanks to this, the write barrier check can
be realized by simple logic and a few comparators, and can occur
completely in parallel to the pointer store instruction without intro-
ducing any delay (Figure[5).

i“’ @ 3
®
Pointer Wri b
" A rite Q
Registers GU Barrier : £
@y 2
Q
Instruction Registers Attribute e
Cache PaU Cache
Data
Cache
Decoder
ALU Read
Barrier
Fetch Decode Execute Memory Attribute

Figure 5: Integration of the write barrier in the main processor
pipeline

4.3.2 Handling

Write barrier handling involves two steps: First, the pointer to the
old object must be written to the remembered set. Second, the r-bit
in this old object must be set.

Pointers are added to the remembered set in parallel to instruc-
tion completion, i.e. when faulting pointer store instructions leave
the attribute stage. (Figure[5] arrow 1).

Setting the r-bit of an object requires its attributes to be updated.
The attributes of single object, however, may be stored in several
locations within the pipeline.

The first of these locations is the attribute cache. As pointer store
instructions do not access the attribute cache, the write barrier han-
dling logic is free to set the r-bit in the cache without causing a
structural conflict (Figure E], arrow 2). In the common case of an
attribute cache hit, this access introduces no additional delay.

Second, object attributes are stored in several registers within
the processor pipeline, i.e. with each pointer in the pointer register
set and with each pointer in the pipeline registers between the de-
code stage and the attribute stage. Since any of these registers can
hold a pointer to the stored-into object, all of them must potentially
be updated. This takes place while the instruction is committed
in the write-back stage (Figure [arrows 3 and 4). The update is
performed by a comparator and some simple logic associated with
each register.

The write barrier circuitry performs both write barrier detection
and handling in parallel with instruction execution. In the common
case of cache hits and available space in the remembered set write
buffer, the write barrier involves no performance penalty whatso-
ever.

4.4 Extensions to the Coprocessor

In order to enable generational collection, only a couple of sup-
plementary micro-operations need to be added to the coprocessor.
These micro-operations provide access to the remembered set and
allow the handling of the r-bit. They neither affect the features nor
the performance of the collector and preserve the bound on maxi-
mum synchronization pause times of the initial system.

The extended algorithm realizes two generations. Apart from the
write barrier and the remembered set, the algorithm is implemented
in microcode without further hardware support. The size of the two
generations is dynamic and adapts to the behavior of the running
program. Objects are promoted to the old generation during major
collection cycles only. In doing so, all objects are promoted, except
those that have been allocated since the last collection cycle. Major
collections are scheduled when the young generation fills beyond
a certain configurable threshold, or when the percentage of objects
surviving a minor collection exceeds another configurable thresh-
old.

S. EXPERIMENTAL RESULTS

To demonstrate the feasibility of our approach, we extended a pro-
totypical implementation of the initial system by our hardware sup-
port for generational garbage collection.

The main processor as well as the garbage collection coprocessor
are described in VHDL and synthesized for an Altera Stratix-II-
FPGA (EP2S60, [1]).

The main processor is realized as a 3-way multiple-issue explic-
itly parallel RISC, with 8K instruction cache, 8K data cache and 2K
attribute cache. The garbage collection coprocessor can execute the
initial algorithm and the extended generational algorithm. In either
case, the algorithm gets by with 256 microcode words with 96 bit
each. The coprocessor including the microcode memory uses ap-
proximately 20% of the chip area. Our extensions for generation
garbage collection occupy less than 2%.

To realize a platform for measurements, we supplemented the
main processor and the coprocessor with standard DDR-SDRAM
and peripheral devices such as an Ethernet interface and a termi-
nal interface. The entire prototype is synchronously operated at
25 MHz.

An integrated measurement framework allows to monitor up to
32 internal processor signals in every clock cycle. With an on-board
gigabit ethernet interface, the measurement data is transmitted to a
measurement computer, written to several hard disks in parallel,
and analyzed offline.

For evaluation, we ran several statically compiled Java appli-
cations with both collectors. For each application, we chose the
smallest heap size required for real-time behavior (i.e. without mu-
tator starvation).

We first measured the fraction of time with garbage collector
activities relative to application execution time (Figure[6)). The cor-
responding results reflect the efficiency of garbage collection. On
average over all benchmarks, collector activity is reduced by a fac-
tor of 5. Of our benchmarks, javac represents the worst case for
a generational collector: It compiles Java classes in a sequential
manner and independently of each other. In cases like this, the gen-
erational hypothesis does not apply, and almost all live objects must
be collected at every collection cycle. Even in this case, however,
the generational collector does not perform worse than the initial
collector thanks to the efficient implementation of the generational
extensions. In contrast to javac, jlisp (a Lisp interpreter written
in Java) is ideal for a generational copying collector. It shows a
very high allocation rate, and most allocated objects die relatively

S — initial collector
= extended collector

S
> 20 1
g3
=5
5215
c 2
S
52 107 1
© o
&= O
£ 5° I
s N N
ok \
9 e} O O N
& NS & & ¢ & S
K Vg &L
00

Figure 6: Collector activity (% of application execution time)

young. In this case, the activity of the collector is reduced by a
factor of 12.

Next, we analyzed the efficiency of our circuitry for duplicate
prevention. For this purpose, we measured (Table [I):

e the number of executed pointer store instructions;

o the number of write barrier faults without duplicate prevention;

o the number of write barrier faults with duplicate prevention.

number of

program executed pointer wlrlte barrier faults]
N . without with
store instructions duplicate prevention | duplicate prevention
compress 5,541,902 4 2
cup 35,835,933 3 1
db 178,385,747 57,289 3
javac 29,173,589 261,880 23,441
javace 14,576,972 1,519 732
jflex 5,661,668 24,886 6
jlisp 25,878,020 363,108 74
search 4,802,776 10 1

Table 1: Number of executed pointer store instructions and
write barrier faults

First of all, it is interesting to note that only a small fraction
of pointer store instructions actually generates inter-generational-
pointers, i.e. stores young pointers into old objects.

Second, duplicate prevention considerably reduces the number
of write barrier faults (factor 2 to 19000). Thanks to the r-bit and
the corresponding hardware logic, this reduction is accomplished
without any runtime overhead. As a benefit, the maximum size of
the remembered set is surprisingly small (Table 2).

maximum size ‘ average size

’ program ‘ (word)

(word)
compress 2 1.1
cup 4 24
db 3 2.1
javac 19664 7803.5
javace 644 75.8
jflex 13 6.2
jlisp 13 6.1
search 0 0

Table 2: Size of the remembered set at the beginning of minor
collection cycles

Finally, we inspected the memory traffic at the memory con-
troller and measured, for each application, the memory traffic over-
head caused by the collector relative to memory traffic of the corre-
sponding application without garbage collection, i.e. with virtually
infinite memory (Figure[7). Considering the average of all bench-
marks, the initial collector generates overheads from 18% to 94%,

while the extended collector reduces them to 1% to 28%. On av-
erage, our generational extensions reduce the overhead by a factor
of 4. Again, javac represents the worst-case, and jlisp the best-case
(from 43% down to 1%).

100 —= initial collector ‘ .
9 90 | — extended collector z 1
- 80 N
[N
g: 70 r : 1
Q 60 N 1
o N
o 50r :]
g 40 L
2 301 < 1
g I N
g 20 N
E 10 N 1
0 Nl
S K 0 O & N
Q@e ™ & \'zﬁﬁ_@"’o ©
& >
S

Figure 7: Memory traffic overhead of garbage collection

6. RELATED WORK

The system presented in this paper combines and leverages in-
cremental garbage collection, generational garbage collection, and
hardware support for both. In this section, we compare collectors
introduced by previous work with respect to hardware support for
generational garbage collection and real-time capabilities.

Hardware support for garbage collection appeared in the 1980s
in many language-directed architectures. The best known systems
are SOAR (Smalltalk On A RISC, [12]), SPUR (Symbolics Pro-
cessing Using RISC, [[14]), and the Symbolics 3600 [8].

SOAR and SPUR have been developed at the University of Ber-
keley and aim at improving the performance of Smalltalk (SOAR)
and Lisp (SPUR). Both projects offer hardware support for gener-
ational garbage collection and rely on an object-based RISC archi-
tecture that uses tagged memory to distinguish pointers from non-
pointer data. They segregate objects into several generations that
are collected separately by a non-incremental copying algorithm in
software [15]]. A hardware-supported write barrier checks for the
creation of inter-generational pointers and triggers an exception in
case of a fault. The write barrier fault handling is realized by a
software routine that maintains a remembered set.

The Symbolics 3600 is a special-purpose Lisp machine aimed at
providing high performance for artificial intelligence applications.
It relies on an object-based CISC architecture with tagged memory
and offers hardware support for generational garbage collection.
Like SOAR and SPUR, the Symbolics segregates objects into sev-
eral generations, but collects them using an incremental garbage
collection algorithm instead. Read barrier checks as well as write
barrier checks are realized in microcode. In case of barrier faults,
exceptions are triggered and handled in software. In order to keep
track of inter-generational pointers, Symbolics uses a page mark-
ing technique. In doing so, Symbolics stores the address of each
virtual memory page containing inter-generational pointers into a
dedicated table. This table is physically implemented as two sep-
arate tables: the first is provided for swapped-in pages, realized in
a special-purpose dedicated memory, and maintained by means of
hardware support in order to minimize runtime costs. The second is
provided for swapped-out pages, stored in non-pageable memory,
and entirely maintained in software.

During the 1990s, object-based architectures have been super-
seded by off-the-shelf processors, mainly for economical reasons.
Following this trend, researchers proposed a number of active mem-
ory modules for standard processors. The best known of these mod-
ules is the so-called garbage-collected memory module (GCMM)
[13] designed for hard real-time applications written in C or C++.
Apart from the actual memory devices, the GCMM contains a stan-
dard microprocessor and a number of custom circuits, including an
arbiter and two elaborate CAM-like devices. Unfortunately, how-
ever, the hardware costs of the GCMM are extremely high and
in particular prohibitive for embedded systems. Furthermore, this
module must separately process every single word and cannot use
burst memory transfers. As a result, the module’s data through-
put is considerably inferior to that of modern memory devices like
SDRAM. Finally, the loose coupling between main processor and
memory module renders synchronization between application and
collector particularly expensive. Simulations show that the syn-
chronization overhead amounts to up to 100% [9].

Recently, together with the success of Java, a number of archi-
tectures emerged with hardware support for native Java bytecode
execution. Surprisingly, however, they offer little to no support for
garbage collection. Only Komodo [[11] targets real-time applica-
tions and uses a combination of Dijkstra’s algorithm and Baker’s
treadmill [3|]. It realizes a write barrier in microcode, while the
collection algorithm is entirely executed by a dedicated software
thread. The main drawback of Komodo’s approach is its high run-
time overhead: the write barrier accounts for up to 60% of over-
head, while other synchronization mechanisms produce an addi-
tional 10-15% [10].

In summary, among all architectures presented in this section,
only the GCMM provides hardware support for real-time garbage
collection, but suffers from prohibitive hardware costs and high
runtime overhead. In contrast, all architectures with generational
garbage collection (SOAR, SPUR, Symbolics) focus on interactive
systems and garbage collection efficiency, but do not address real-
time garbage collection at all. They realize write barrier checks in
hardware, but handle write barrier faults in software.

7. CONCLUSIONS

In this paper, we introduce a system that combines hard real-time
garbage collection with the efficiency of generational techniques.
Thanks to write barrier detection and fault handling in hardware,
the benefits of generational garbage collection, for the first time,
come without any negative side-effects.

We built a prototype and ran various Java programs. Experi-
mental results show the benefits of our approach: with reasonable
hardware effort, the amount of garbage collector activities as well
as the memory traffic generated by the collector are significantly re-
duced without degrading worst-case performance. Because of the
resulting reduction in power consumption, the proposed extensions
are of particular interest for power-aware mobile devices.

8. REFERENCES

[1] Altera. STRATIX II device family data sheet, 2006.
[2] H. G. Baker. List processing in real-time on a serial
computer. Communications of the ACM, 21(4):280-94, 1978.

[3] H. G. Baker. The treadmill: real-time garbage collection

without motion sickness. ACM Sigplan Notices, 27(3), 1992.

H. Lieberman and C. E. Hewitt. A real-time garbage

collector based on the lifetimes of objects. Communications

of the ACM, 26(6):419-429, 1983.

M. Meyer. A novel processor architecture with exact tag-free

pointers. IEEE Micro, 24(3):46-55, 2004.

[6] M. Meyer. An on-chip garbage collection coprocessor for
embedded real-time systems. In //th IEEE International
Conference on Embedded and Real-Time Computing Systems
and Applications, Hong Kong, Aug. 2005.

[71 M. Meyer. A true hardware read barrier. In ISMM’06
Proceedings of the Fifth International Symposium on
Memory Management, Ottawa, June 2006.

[8] D. A. Moon. Architecture of the Symbolics 3600. In
Proceedings of the 12th Annual International Symposium on
Computer Architecture, pages 76—83, Boston, MA, June
1985.

[9] K. D. Nilsen and W. J. Schmidt. A high-performance
hardware-assisted real time garbage collection system.
Journal of Programming Languages, 2(1), 1994.

[10] M. Pfeffer. Ein echtzeitfihiges Java-System fiir einen
mehrfadigen Java-Mikrocontroller. PhD thesis, University of
Augsburg, Germany, Feb. 2004.

[11] M. Pfeffer, T. Ungerer, S. Fuhrmann, J. Kreuzinger, and
U. Brinkschulte. Real-time garbage collection for a
multithreaded Java microcontroller. Real-Time Systems,
26(1):89-106, 2004.

[12] A.D. Samples, D. M. Ungar, and P. Hilfinger. SOAR:
Smalltalk without bytecodes. In OOPSLA’86 ACM
Conference on Object-Oriented Systems, Languages and
Applications, volume 21(11), pages 107-118, Oct. 1986.

[13] W.J. Schmidt and K. D. Nilsen. Performance of a
hardware-assisted real-time garbage collector. In
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
76-85, Oct. 1994.

[14] D. Ungar, R. Blau, P. Foley, D. Samples, and D. Patterson.
Architecture of soar: Smalltalk on a risc. In ISCA ’84:
Proceedings of the 11th International Symposium on
Computer Architecture, pages 188—197, New York, NY,
USA, June 1984.

[15] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. ACM SIGPLAN
Notices, 19(5):157-167, Apr. 1984.

[16] P. R. Wilson. Uniprocessor garbage collection techniques.
Technical report, University of Texas, Jan. 1994.

[4

—

[5

—

	Introduction
	Initial System
	Main Processor
	Garbage Collection Coprocessor
	Synchronization Mechanisms

	Generational Collection
	Novel Hardware Support
	Design Considerations
	Implementation of the Remembered Set
	The Write Barrier
	Detection
	Handling

	Extensions to the Coprocessor

	Experimental Results
	Related Work
	Conclusions
	References

