
Mark-Sweep or Copying?
A "Best of Both Worlds" Algorithm

and a Hardware-Supported Real-Time Implementation
Sylvain Stanchina Matthias Meyer

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47
70569 Stuttgart, Germany

{sylvain.stanchina, matthias.meyer}@ikr.uni-stuttgart.de

Abstract
Copying collectors offer a number of advantages over their mark-
sweep counterparts. First, they do not have to deal with mark stacks
and potential mark stack overflows. Second, they do not suffer
from unpredictable fragmentation overheads since they inherently
compact the heap. Third, the tospace invariant maintained by many
copying collectors allows for incremental compaction and provides
the basis for efficient real-time implementations. Unfortunately,
however, standard copying collectors depend on two semispaces
and therefore need at least twice as much memory as required for
the maximum amount of live data.

In this paper, we introduce a novel mark-compact algorithm that
combines the elegance and simplicity of Baker’s copying algorithm
with the memory efficiency of mark-sweep algorithms. Further-
more, we present a hardware-supported implementation for real-
time applications in the framework of an object-based RISC archi-
tecture.

Measurements of Java programs on an FPGA-based prototype
show that our novel mark-compact algorithm outperforms a cor-
responding copying collector in every respect. It requires far less
memory space for real-time behavior and, at the same time, reduces
the overall runtime overhead under typical operating conditions.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Memory Management (Garbage Collection)

General Terms Design, Languages, Measurement, Performance,
Experimentation

Keywords Real-Time Garbage Collection, Mark-Compact Col-
lection, Object-Based Processor Architecture, Hardware Support

1. Introduction
Tracing garbage collection algorithms are subdivided into two main
families. Mark-sweep algorithms, as their name implies, operate in
two passes. They first mark all live objects by recursively tracing
the graph of objects. Then, they reclaim all unmarked objects.
Standard copying algorithms, on the other hand, divide the heap
into two equally-sized semispaces and, in a single pass, copy all live

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’07, October 21–22, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-893-0/07/0010. . . $5.00

objects from one semispace to the other. In this way, they implicitly
reclaim dead objects.

The huge advantage of mark sweep algorithms is that they do
not depend on semispaces, but allow applications to always use
the entire heap. Unfortunately, this advantage comes at the price
of two serious problems. First, mark-sweep collectors need explicit
storage for a tracing stack and must address the potential problem
of stack overflows. In contrast, copying collectors do not have to
worry about overflows because they dynamically embed a tracing
queue into the heap. Second, and most importantly, mark-sweep
collectors cause fragmentation, and with it unpredictable amounts
of memory overhead. In contrast, copying collectors inherently
compact the heap, which furthermore allows for extremely low-
cost allocation.

The two problems of mark-sweep collectors are particularly se-
vere for embedded systems. These systems have to achieve deter-
ministic behavior despite of tightly restricted resources, both with
respect to memory space and processing time. Regarding mark
stacks, they are difficult to realize by means of limited memory,
and robust implementations have to reserve one stack entry per
object (e.g. [7, 24]). Regarding fragmentation, its actual extent is
difficult to predict in advance. For deterministic memory behav-
ior, mark-sweep collectors have to use an additional compaction
pass, resulting in mark-sweep-compact or mark-compact collec-
tors. However, standard compaction methods, such as threading
[10] or table-based methods [8] cannot be made incremental since
they render the heap unusable until compaction completes. Incre-
mental methods, on the other hand, are extremely expensive. For
this reason, known mark-sweep-compact algorithms for real-time
systems either decompose objects into blocks of a fixed size [24],
or they only process small portions of the heap at a time [11, 2, 22].
Unfortunately, the first approach simply trades external for internal
fragmentation, while the second approach reduces part of the frag-
mentation only, and that at the cost of longer pauses and/or higher
runtime overhead.

In this paper, we present a novel mark-compact garbage collec-
tion algorithm for real-time applications. Like a copying collector,
it traverses the graph of objects without a marking stack, but un-
like standard copying collectors, it does not depend on semispaces
for compaction. In this way, the algorithm combines the elegance
and simplicity of copying algorithms with the memory efficiency
of mark-sweep algorithms.

To substantiate the benefits of our algorithm, we furthermore
present a hardware-supported implementation for a system in-
cluding an object-based RISC processor supported by a micro-
programmable garbage collection coprocessor. Thanks to the con-
currency gained by the coprocessor and efficient synchronization
in hardware, pauses caused by garbage collection or synchroniza-

tion are usually very short and always guaranteed to be less than a
few hundred clock cycles. Therefore, garbage collection is almost
invisible to application programs.

The rest of this paper is organized as follows. In Section 2,
we analyze Baker’s copying collector and show how its essential
properties can be used to design a collector without semispaces.
Section 3 introduces an object-based architecture for hardware-
supported garbage collection and describes the implementation of
our mark-compact algorithm for that architecture. In Section 4, we
compare the performance of the algorithm with that of a Baker-
style copying algorithm and present measurement results from our
FPGA-based prototype. Section 5 discusses related algorithms and
architectures. Finally, Section 6 provides a conclusion.

2. Algorithm
Baker’s algorithm [3] is the best-known incremental copying algo-
rithm. It is simple, elegant, and, with Steele’s extensions, in prin-
ciple suitable for fine-grained incremental compaction. For these
reasons, it has been used as the basis for numerous real-time imple-
mentations [17, 14]. Being a standard copying collector, however,
Baker’s algorithm requires two semispaces and therefore at least
twice the maximum amount of live memory needed by an applica-
tion.

The novel algorithm we introduce in this paper is best described
as a "best of both worlds" combination of a Baker-style copying
collector and a mark-sweep collector: From Baker, it inherits in-
cremental compaction. From mark-sweep, it inherits memory effi-
ciency.

This section is organized as follows. First, we describe Baker’s
algorithm with Steele’s extensions. Next, we analyze and extract
its essential mechanisms and use them as the basis for a novel
mark-compact algorithm. Finally, we identify a number of potential
implementation issues.

In this section, we initially abstract from implementation de-
tails. We merely assume that objects are composed of a header and a
body, and that the collector and the application (mutator) are able to
unambiguously distinguish between pointers and non-pointer data.

2.1 Baker’s Algorithm
Like most copying algorithms, Baker’s algorithm divides the heap
into two equally-sized semispaces referred to as fromspace and
tospace. At the start of a collection cycle, the collector stops the ap-
plication, swaps tospace and fromspace, and initializes two pointers
scan and free to point to the bottom of tospace. Then, the collector
evacuates all objects referenced by the root set from fromspace to
tospace. To evacuate an object, the collector reserves an empty ob-
ject frame at the position referred to by free and doubly links the
empty object frame to the corresponding fromspace original (Fig-
ure 1a, assuming that A and B are referenced by the root set). As
soon as the collector has finished with the roots, it resumes the mu-
tator and enters the main collection loop.

At each iteration of the main collection loop, the collector fills
the empty object frame referred to by scan. For this purpose, it fol-
lows the backlink in the frame header and successively copies the
fromspace original to tospace. In doing so, each time the collector
encounters a fromspace pointer, it checks whether the correspond-
ing object has already been evacuated. If so, it reads the forwarding
pointer. If not, the collector evacuates that object. In either case, the
collector stores a tospace pointer into the tospace copy. When the
collector has finished with an object, it deletes the backlink in the
tospace copy. A cycle terminates when scan catches up with free.
For illustration, the example in Figure 1b shows the moment the
collector copies and scans object B.

The states of objects during a collection cycle are usually de-
scribed by Dijkstra’s tricolor abstraction [6]. Accordingly, an ob-

BA

A B C

backlink

forwarding pointer bodyheader

regular pointer from A to C

fromspace

tospace

freescan

(a) After root set processing

B

B

C

A

A

C

fromspace

tospace

freescan

(b) Main collection loop

Figure 1. Baker’s algorithm

ject is white when it has not yet been seen by the collector. Gray
indicates that the collector has started with an object, but has not
yet finished with it. Finally, an object is black when the collector
has finished with that object, i.e. when it has visited and grayed all
its descendants. At the end of a collection cycle, all objects are ei-
ther black or white. Black objects survive, while white objects are
reclaimed as garbage.

Figure 2 illustrates the tricolor abstraction for Baker’s algo-
rithm. White objects exclusively lie in fromspace. Gray objects ex-
ist in both spaces at the same time. Black objects have been entirely
copied and lie in tospace only. However, the fromspace original of
black objects is still required to redirect any remaining fromspace
pointers to tospace.

New objects are allocated in tospace, starting from the top. As
a consequence, all objects allocated in the course of a collection
cycle are initially black and can be ignored by the collector in that
cycle.

Baker’s algorithm is incremental and allows the mutator to
proceed during a garbage collection cycle. If, however, both the
mutator and the collector are allowed to access the heap without

black

gray

tospacefromspace

white

backlink

forwarding pointer

Figure 2. Object states (Baker’s algorithm)

restriction, problems may arise if the mutator writes a pointer to
a white object into a black object. If the original pointer to the
white object is destroyed and no further pointer to the white object
exists, the object will be illegally discarded at the end of the garbage
collection cycle. For this reason, Baker’s algorithm erects a read
barrier between the mutator and the heap to protect the garbage
collector. This barrier examines every pointer load to ensure that
the mutator never sees a white object. Whenever the mutator is
about to access a pointer to an object in fromspace, the read barrier
immediately evacuates the object, or, if the object has already
been evacuated, reads the forwarding pointer. In this way, the read
barrier realizes a so-called tospace invariant, i.e. the mutator will
exclusively see tospace pointers.

2.2 Analyzing Baker’s Algorithm
As mentioned in the introduction, the two main advantages of copy-
ing collectors over mark-sweep collectors are that they do not de-
pend on a mark stack and that they compact the heap. In the follow-
ing section, we are going to analyze how the corresponding mech-
anisms are realized by Baker’s algorithm, i.e. how the algorithm
gets by without a mark stack and how it uses the semispaces for
compaction.

First, Baker’s algorithm, like any tracing algorithm, requires
some sort of a data structure to remember the set of objects that
have been seen by the collector, but not yet scanned. Mark-sweep
algorithms realize this set as a separate mark stack. In contrast,
Baker’s algorithm realizes this set in the form of a queue embedded
into tospace. This tracing queue is delimited by scan and free.
All objects, strictly speaking all empty object frames located in
between these pointers, belong to the set of objects that remain to be
processed by the collector. The queue grows when the collector or
the read barrier advances free, i.e. while they evacuate objects from
fromspace to tospace. Correspondingly, the queue shrinks when the
collector advances scan, i.e. while the collector actually copies the
objects and scans them for pointers. A collection cycle terminates
when the queue is empty, i.e. when scan meets free.

Second, Baker’s algorithm, like any mechanism for compaction,
must relocate objects and update pointers. Basically, the pointer up-
date requires a mechanism to map the original locations of all ob-
jects to their respective new locations. If the mutator is furthermore
allowed to proceed during compaction and if it may access objects
at their new locations before they have been completely copied, a
second mechanism will be required to map the new locations back
to the original locations.

For relocation, Baker’s algorithm evacuates all live objects
from fromspace and arranges them closely packed at the bottom
of tospace. To map fromspace pointers to tospace pointers, each
fromspace object is provided with a forwarding pointer that refers
to the corresponding tospace copy. To furthermore allow the muta-
tor to proceed during collection (and, with it, during compaction),
the algorithm maintains the tospace invariant and provides each
tospace copy with a backlink to the corresponding fromspace orig-
inal. Thanks to the tospace invariant, the mutator only sees tospace
addresses, independently of whether objects have already been
copied or not. Thanks to the backlink, the mutator is able to find
the original version of uncopied or incompletely copied objects.

Reconsidering the two mechanisms just analyzed, it is most
interesting to note that neither of them depends on semispaces.
First, each entry in Baker’s tracing queue requires as much space as
the entire object. Actually, however, a queue with simple pointers
would be absolutely sufficient. For this reason, using a full semi-
space for the tracing queue is actually a waste of memory. Second,
incremental compaction in itself does not depend on semispaces
either. As long as there is some sort of a tospace invariant and some
sort of method to make object references independent from object

locations (such as providing a backlink), objects can actually be
moved from anywhere to anywhere.

2.3 A New Mark-Compact Algorithm
2.3.1 Overview
The analysis of Baker’s algorithm has revealed that neither tracing
nor incremental compaction requires the presence of entire objects
in tospace. We exploit this discovery by dynamically dividing the
heap into two spaces of different sizes. The first space corresponds
to Baker’s fromspace and contains entire objects. This space will
be referred to as object space. The second space corresponds to
Baker’s tospace, but will contain references only. These references
are designated as handles. They double as queue entries for scan-
ning and as indirections for incremental compaction. Accordingly,
the second space will be referred to as handle space.

Our algorithm operates in three phases. The first phase is sim-
ilar to Baker’s algorithm. However, instead of evacuating objects
by reserving empty object frames in tospace, the first phase of our
algorithm merely creates object handles in handle space (Figure 3,
gray, upper diagram). Analogously to Baker, objects in object space
are doubly linked to the respective handles in handle space, i.e.
our handles correspond to Baker’s backlinks. At the end of this
phase, all live objects are "marked" by a reference to a handle.
Therefore, we refer to the first phase as the mark phase. The sec-
ond phase is the compaction phase. In this phase, live objects are
compacted within object space, and the handles are redirected ac-
cordingly (Figure 3, gray, lower diagram). Dead objects are implic-
itly overwritten. The third phase is designated cleanup phase. This
phase removes all handles and returns the objects to the same state
as observed before the mark phase.

The algorithm is entirely incremental and allows the application
to proceed during all phases. In the mark phase, a read barrier
ensures a handle space invariant, i.e. the mutator exclusively sees
handles. Thanks to the handles and the invariant, the compaction
phase is incremental as well. In the cleanup phase, another read
barrier ensures an object space invariant so that the mutator will
no longer see handles, but direct object pointers only.

2.3.2 Heap Layout
For the best possible memory efficiency, our algorithm adjusts
the size of the object space and the handle space dynamically.
Since any live object requires a handle during compaction, and
since all allocated objects potentially survive a collection cycle,
we dynamically reserve space for one handle per allocated object.

black

gray

white

handle spaceobject space

Figure 3. Object states (our algorithm)

The corresponding heap layout is shown in Figure 4. The object
space is located at the bottom end of the heap. An allocation pointer
alc always refers to the first free location at the end of the object
space. The handle space is arranged at the top end of the heap and
delimited by a pointer alc_lim. At each object allocation, alc is
advanced by the size of the new object, and alc_lim is decreased
by the size of an object handle. In doing so, the handle space is
merely reserved and is initially completely empty. When alc and
alc_lim meet, the heap is full.

handle space

alc alc_lim

object space free space

Figure 4. Heap layout

2.3.3 Mark Phase
During the mark phase, the collector creates a handle for each
reachable object and replaces all pointers by references to corre-
sponding handles. As previously mentioned, this phase is virtually
identical to Baker’s algorithm. The only difference is that objects
are not copied, but left at their place.

At the start of the mark phase, the collector stops the application
and initializes two pointers free and scan to point to the bottom of
handle space, i.e. to the current position referred by alc_lim. Then,
it creates a handle for every object referenced by the root set and
replaces each root set pointer with a reference to the corresponding
handle. In doing so, all handles are successively stored in handle
space at the position indicated by free, and free is incremented
correspondingly. After root set processing, the collector activates
the read barrier and resumes the application. Figure 5a shows a
snapshot of the heap after root set processing. Like in Figure 1, the
example assumes that the root set consists of objects A and B, and
that object A contains a pointer to object C.

At each iteration of the marking loop, the collector follows the
handle pointed to by scan in order to scan the corresponding object.
In doing so, the collector advances a pointer scan’ in object space to
indicate the scanning progress. Whenever the collector encounters
a pointer that refers to an object rather than a handle, it checks
whether that object already contains a reference to a handle, i.e.
whether it has been previously marked. If so, the collector reads
that reference. Otherwise, it creates a handle and doubly links it
to the object. In either case, the collector replaces the pointer at
the position pointed by scan’ by a reference to the corresponding
handle. When the collector has finished with an object, it advances
scan to point to the next handle (Figure 5b). The mark phase
terminates when scan catches up with free.

Like Baker, we use a read barrier to protect the collector and
to ensure that the mutator sees handles only. In case the mutator
attempts to read a non-handle, i.e. a direct pointer to an object,
the read barrier immediately creates a handle for this object, or,
if a handle to this object already exists, reads the corresponding
reference from the object.

In contrast to Baker’s algorithm, newly allocated objects must
be specially treated in order to avoid that they are prematurely
reclaimed. Since the compaction phase reclaims unmarked ob-
jects, i.e. objects without handles, objects allocated during the mark
phase and the compaction phase must immediately be marked, i.e.
objects and their handles must be created at the same time. As pre-
viously mentioned, each allocation reserves space for a handle by
decreasing alc_lim. In the mark and compaction phases, this space
is immediately used to store the handle created with the allocated
object. In this way, handles for newly created objects are arranged

at the left end of the handle space, and in particular not in between
scan and free. Therefore, newly created objects are not part of the
tracing queue and do not cause any needless work for the collec-
tor. Because of the handle space invariant, the mutator can never
write non-handle references into objects, and so the mark phase can
safely ignore objects created during the current garbage collection
cycle. For illustration, Figure 5c shows the heap after the allocation
of a new object D.

CBA

object space

handle space

scan = alc_lim
free

alc

(a) After root set processing

CBA

handle space

object space

scan
alc_lim free

scan’

alc

(b) During scanning

CA DB

handle space

alc_lim

object space

free
scan

scan’

alc

(c) Object allocation

Figure 5. Mark phase

2.3.4 Compaction Phase
During the compaction phase, the collector reclaims unmarked
objects and compacts surviving objects to the bottom of the heap.
In doing so, it uses a so-called sliding technique that preserves the
order of objects.

At the start of the compaction phase, the collector initializes two
pointers target and source to refer to the bottom of object space
(Figure 6a). During each iteration of the main loop, the collector
checks the object pointed to by source. If this object is unmarked,
i.e. if it does not contain a handle, the collector advances source
to the next object (Figure 6b). Otherwise, the collector moves
that object from its current position to the position referred to by
target. To do so, the collector first copies the object header (i.e. the

reference to the object’s handle) and updates the handle to refer to
the new location. Then, it successively copies the contents of the
object and advances source and target accordingly (Figure 6c and
6d). The compaction loop repeats until source catches up with the
allocation pointer alc (Figure 6e).

During compaction, the free space between target and source
becomes bigger and bigger. To avoid that newly created objects
have to be moved soon after their creation, each allocation checks
whether this free space is large enough to accommodate the new
object. If so, the object is allocated at target (more precisely at the
position that target will assume as soon as the compactor is done
with the object it currently copies) instead of at alc. This way, less
objects have to be moved, the compaction phase terminates earlier,
and the overall efficiency of garbage collection is increased.

W ZYX

sourcetarget alc

(a) Step 1

ZYX

sourcetarget alc

(b) Step 2

X ZY

alcsourcetarget

(c) Step 3

X ZY

sourcetarget alc

(d) Step 4

X Z

source alctarget

(e) Step 5

Figure 6. Compaction phase

2.3.5 Cleanup Phase
During the cleanup phase, the collector removes all handles and
replaces all references to handles by direct pointers to the corre-
sponding objects. The presence of this phase yields three essen-
tial benefits. First, there are no handles and no indirections while
the collector is idle. Second, it allows handles to double as trac-
ing queue entries for marking and as indirections for compaction.
Third, thanks to the removal of all handles at the end of a garbage
collection cycle, there is no need to explicitly garbage collect the
handle space itself.

At the beginning of the cleanup phase, the collector suspends
the mutator for the duration of a second root set processing. This
time, references to handles are replaced by direct object pointers,
and the handle references in the corresponding objects are deleted.
Next, the collector initializes scan to refer to the bottom of the
handle space, i.e. to the current position referred to by alc_lim. The
pointer free remains unchanged and still refers to the end of the
used handle space. Then, the mutator is resumed.

An iteration of the main cleanup loop consists of the following
steps. First, the collector follows the handle currently referred to
by scan. Next, it deletes the handle reference in the corresponding
object. Then, the collector scans the object like it did during the
mark phase. This time, however, each time it encounters a handle
reference, it replaces that reference by the value of the handle,
thereby effectively removing the indirection caused by the handle.
As soon as the collector has finished scanning an object, it advances
scan to the next handle. The cleanup phase terminates when scan
meets free.

Like during the mark phase, a read barrier maintains an invariant
that allows the mutator to proceed during cleanup. This time, the
read barrier ensures that the mutator never sees object handles.
Whenever the mutator is about to read a reference to a handle,
the read barrier immediately replaces that reference by the handle
value, i.e. by a direct pointer to that object.

As always, allocations reserve handles for allocated objects
during the cleanup phase, too. However objects are created without
handles, like in the idle phase. In contrast, objects allocated during
the mark and compacting phases are always created together with
the corresponding handle.

After the cleanup phase, the handle space is effectively empty,
and the exact upper bound for the number of live objects is now
given by the difference of free and alc_lim. For this reason, the han-
dle space can be shrunk to that size, and alc_lim can be increased
accordingly.

2.4 Implementation Issues
Our algorithm, like Baker’s algorithm, is both simple and elegant.
At the same time, however, implementations threaten to become
expensive.

First of all, our algorithm relies on a read barrier. However,
read barriers are known to be more expensive than write barriers.
On the one hand, load instructions are more frequent than store
instructions. Accordingly, read barrier checking introduces more
runtime overhead than write barrier checking. On the other hand,
read barrier faults tend to cluster after root set scanning. This might
reduce mutator progress to a degree that is intolerable for real-time
systems.

Second, our algorithm depends on indirections during the mark
and compaction phases. This indirection must be followed by every
single load and store instruction, both for pointer and non-pointer
accesses. Usually, the cost of such indirections is prohibitively high
(e.g. [7]).

Third, fine-grained Steele-style compaction renders memory ac-
cesses even more expensive. For every single load and store in-
struction, the application code must check whether the collector is
currently moving the corresponding object. If so, it must addition-
ally determine whether the object is to be accessed at its original
location or at its new location, and it must accordingly calculate
the address of the requested field.

3. Implementation
In fact, all the implementation issues mentioned at the end of the
previous section are not caused by the complexity of our algorithm,
but by the inability of software to efficiently synchronize appli-
cations with garbage collection. All the required synchronization
mechanisms, be it for read barriers, for incremental compaction,
or for mutual exclusion, have to be implemented in software by
compiler-inserted code sequences and cause three major draw-
backs. First, the synchronization code inflates the program code.
Second, it slows down application execution. Third and finally, the
synchronization code introduces strong dependencies between the
compiled application code and a particular garbage collection algo-
rithm.

In contrast to software, hardware has the potential to operate in
parallel. Motivated by this insight, Meyer proposed a novel RISC
processor architecture that provides the basis for efficient garbage
collection and synchronization in hardware [13]. In a first proof-of-
concept design, he realized Baker’s incremental copying algorithm
with Steele-style extensions for incremental compaction. Thanks to
a garbage collection coprocessor and synchronization in hardware,
garbage collection is completely independent of any compiler sup-
port and causes little amounts of overhead only. Furthermore, the
system is able to predictably bound any garbage collection pause to
less than 500 clock cycles [14].

In this section, we show how to take advantage of Meyer’s
system to implement our novel algorithm in an efficient way. In
the first part of this section, we introduce Meyer’s initial system. In
the second part, we present an implementation of our algorithm for
this system and in particular describe the required extensions.

3.1 Initial System
An ideal computer system should provide the illusion of infinite
memory. In such a system, objects would be allocated as required
and forgotten about when they were no longer needed. Motivated
by this vision, Meyer proposed a novel object-based architecture
and realized a computer system with hardware-supported garbage
collection for embedded real-time applications [13]. The architec-
ture completely abstracts from memory management at the assem-
bly language level and thereby allows garbage collection as well
as all garbage-collection-related synchronization to be completely
realized in hardware. The system consists of a RISC processor ac-
cording to the object-based architecture (main processor) and a
dedicated garbage collection coprocessor that operates completely
in parallel to application processing (Figure 7).

Memory Controller

Cache
Coprocessor

Garbage
Collection

Main
Processor

Figure 7. System overview

3.1.1 Main Processor
For exact garbage collection in hardware, objects and pointers must
be known at the assembly language level. For this reason, the
main processor shows an object-based architecture. Rather than
using plain addresses, load and store instructions use pointers with
indices to access memory. The architecture provides a dedicated
instruction to create objects. There is, however, no instruction to
delete objects. Instead, the architecture relies on a hidden garbage
collector to recycle memory behind the scenes.

The architecture exactly identifies pointers by strictly separating
pointers from non-pointer data. It implements this separation by
means of three mechanisms. First, objects are split into two ded-
icated areas, one for pointers, and one for non-pointers. Each of
the two areas realizes a separate index space starting at zero. Two
object attributes π and δ describe the size of the pointer area and
the data area, respectively. These attributes are stored in an object
header that is invisible at the assembly language level (Figure 8).
Second, the processor’s register set is split into a pointer register set
and a data register set. Third, separate instructions are provided for

π δ

0 1 π−1 0 1 δ−1

attributes pointer area data area

pointer word data word

Figure 8. Object layout

pointers and non-pointer data. Regarding load and store instruc-
tions, for instance, pointer load and pointer store instructions im-
plicitly target an object’s pointer area, while load and store instruc-
tions for non-pointers implicitly target its data area, respectively.

In order to ensure the integrity of pointers, the content of a
data register cannot be transferred to a pointer register or vice
versa. Furthermore, range checking ensures that load and store
instructions never violate the bounds of the corresponding pointer
or data area, respectively.

The implementation of the processor is based on a pipelined
RISC design that is extended to efficiently handle objects and at-
tributes (Figure 9). Compared to a classical RISC, the processor
pipeline shows the following three enhancements: First, the regis-
ter set (decode stage) is split into 16 data registers and 16 pointer
registers. Each pointer register is supplemented by two attribute
registers. Whenever a pointer register contains a non-null value, the
corresponding attribute registers hold the attributes of the object the
pointer register refers to. Second, the execute stage contains differ-
ent execution units for different types of target operands. While the
ALU (Arithmetic Logic Unit) performs standard operations target-
ing data registers, the PGU (Pointer Generation Unit) takes care of
operations targeting pointer registers, and the AGU (Address Gen-
eration Unit) performs range checks and generates addresses for
the cache in the subsequent memory stage. Third and finally, the
pipeline exhibits an additional attribute stage after the usual mem-
ory stage. Whenever a non-null pointer is loaded from memory, this
stage loads the attributes of the corresponding object. It features an
attribute cache in order to allow for attribute accesses without per-
formance penalty in the common case.

Fetch Decode Execute Memory Attribute

Pointer
Registers

Registers
Data

Instruction
Cache

Decoder

Cache
Data

PGU

ALU

AGU

Read
Barrier

Cache
Attribute

Figure 9. Main processor pipeline

3.1.2 Garbage Collection Coprocessor
The garbage collection coprocessor is a low-cost microprogram-
mable device that is integrated with the main processor on the
same chip (Figure 7). It realizes the complete garbage collection
algorithm in the form of a single microprogram.

Because of the poor temporal locality of garbage collection, the
coprocessor does not profit from a general-purpose data cache and
is consequently designed without one. Typical garbage collection
tasks such as scanning and copying, however, show a fair amount
of spatial locality. To exploit this property, the coprocessor features
burst registers that take advantage of efficient burst modes offered
by modern memory devices.

The proof-of-concept collector of the initial system targets hard
real-time applications. It is based on Baker’s copying algorithm
with Steele’s extensions for fine-grained lazy copying. Whenever
the collector evacuates an object from fromspace to tospace, it does

not actually copy the object, but merely reserves an empty object
slot in tospace (Section 2.1). To do so, it sets a gray-bit in the
original π-attribute, saves the δ-attribute to tospace, and overwrites
the δ-attribute with a forwarding pointer (Figure 10). In tospace,
it initializes the field for the π-attribute with a backlink to the
fromspace original. In this way, the garbage collector distributes the
attributes between fromspace and tospace and manages to doubly
link the tospace copy to the fromspace original without causing any
additional storage overhead.

π

gray-bit

tospacefromspace

forwarding pointer

backlink

δ

Figure 10. Linking of object attributes

3.1.3 Synchronization Mechanisms
The tight coupling of the main processor and the garbage collec-
tion coprocessor allows for particularly efficient synchronization in
hardware, including cache coherency, cache line locking, mutual
exclusion, and incremental stack processing [14]. In the context of
this paper, two synchronization mechanisms are of particular inter-
est.

First, a hardware read barrier realizes read barrier checking
as well as read barrier fault handling entirely in hardware. The
corresponding circuitry is located in the processor’s attribute stage
(Figure 9), causes no runtime overhead for read barrier checking,
and handles read barrier faults within a few clock cycles [15].

The second mechanism allows for concurrent compaction. To
realize Steele’s extensions to Baker’s algorithm, the mutator must
always decide whether a requested field inside a particular object
is already available in tospace. If not, the mutator has to recalcu-
late the field’s address, using the backlink entry found in the yet
incomplete tospace copy.

To implement this elaborate procedure in an efficient way, the
processor treats the backlink (i.e. an object’s location in fromspace)
as a third object attribute and adds a corresponding entry to every
pointer register and to every attribute cache line. Whenever the pro-
cessor is about to access a field inside a gray object, the AGU cal-
culates two addresses in parallel: a tospace address based on the
actual pointer, and a fromspace address based on the backlink. In
case the tospace address is greater or equal than the garbage collec-
tor’s scan pointer (Figure 1b), the field has not yet been copied and
the AGU simply replaces the tospace address with the fromspace
address. The procedure just described is implemented by relatively
simple combinatorial logic that does not extend the critical path in
the execute stage. Consequently, Steele-style address generation in
hardware is as fast as standard address generation.

The only runtime cost associated with gray objects occurs if
a pointer to a gray object is to be loaded and, at the same time,
causes an attribute cache miss. In this case, since the π-attribute of
a gray object resides in fromspace and its δ-attribute in tospace, the
attribute cache requires two separate memory accesses to resolve
the cache miss (Figure 10). Since the cache implicitly loads the
backlink during the first memory access, maintaining the backlink
attribute in the cache and the registers does not cause any additional
runtime overhead.

3.2 Extensions for our Algorithm
Basically, our new algorithm relies on exactly the same synchro-
nization mechanisms as Baker’s original algorithm, in particular
read barriers to maintain invariants and indirections in conjunc-
tion with corresponding address generation for incremental com-

paction. For this reason, our extensions are actually minor and
mainly caused by the different heap layout used by our algorithm.

3.2.1 Main Processor
The modified heap layout affects object allocation and address
generation. Accordingly, the processor’s PGU and AGU require a
couple of small extensions.

The PGU is extended in three ways. First, our algorithm reverses
the direction of allocation. Correspondingly, we generalized the
PGU and made the allocation direction configurable. Second, the
object allocation circuitry in the PGU can now decrease the value of
alc_lim in order to reserve space for object handles. Third, the PGU
supports a second allocation pointer alc’ to alternatively allocate in
the free space between target and source (Section 2.3.4).

The AGU is extended in two ways. First, despite the tospace
invariant, the addresses generated by the original AGU will refer
to fromspace if the corresponding object or the corresponding part
of an object has not yet been copied. In contrast, and despite the
handle space invariant, our extended AGU will exclusively generate
addresses in object space. Second, in the original design, a simple
address comparison is sufficient to determine whether an object
needs to be accessed at its original or at its new location. In contrast,
to support single-space compaction, our AGU additionally needs
to know whether the accessed object is currently moved by the
collector or not.

3.2.2 Coprocessor
Since the hardware garbage collector is realized as a micropro-
grammable device, our new algorithm is implemented as easily as
by extending the initial microprogram. Additionally, we added a
few new microinstructions in order to improve the efficiency of
two novel synchronization features, namely for locking the alter-
native allocation pointer alc’ and for updating handles inside the
main processor (see Section 3.2.3 below).

3.2.3 Synchronization Mechanisms
Regarding synchronization of garbage collection and application
processing, we extended the read barrier, added a locking mecha-
nism for the alternative allocation pointer, and implemented a cir-
cuitry to effectively update handle values inside the main processor.

Regarding the read barrier, the circuitry for read barrier check-
ing is exactly the same. While the boundaries of the corresponding
space change once per collection cycle with Baker’s algorithm, they
change twice per cycle with our new algorithm. In contrast, the read
barrier fault handling circuitry needs a minor extension. Since the
read barrier creates handles instead of empty object frames, free
must now be advanced by the size of a handle instead of the size of
the corresponding object.

The second extension allows both processors to access the al-
ternative allocation pointer alc’ in a mutually exclusive way. While
the main processor modifies this pointer whenever it allocates an
object in between target and source, the garbage collection copro-
cessor modifies this pointer as soon as it starts copying an object for
compaction. To avoid potential conflicts, the coprocessor is able to
lock alc’. In the case of a conflict, the main processor will wait until
the lock is cleared.

The third and final modification concerns the backlinks stored
along with π and δ in the form of a third object attribute with ev-
ery pointer register. In our new algorithm, these backlinks act as
handle values. While backlinks, once created, do not change for
the duration of the remaining collection cycle, handle values must
be updated as soon as the collector starts moving the correspond-
ing object. To allow the collector to implement the handle update
process in a particularly efficient way, each pointer register is sup-
plemented with a small comparison circuitry that updates the cor-

responding handle register as soon as the location of the referred
object changes. These circuits operate within a single clock cycle
and completely in parallel to instruction execution.

3.3 Summary
All the extensions described in this section are entirely config-
urable, i.e. the extended system supports our new algorithm as well
as Baker’s original algorithm. As a benefit, the desired algorithm
can easily be selected at runtime by exchanging the microcode in
the coprocessor and by modifying some configuration bits in the
corresponding system registers.

By design, our new algorithm preserves the upper bound on syn-
chronization pause times introduced by the initial system. Further-
more, our system, like the initial system, implements read barrier
fault handling completely in hardware, thereby limiting the run-
time penalty of read barrier faults to a few clock cycles only. As
a resulting benefit and despite fault clustering, all applications we
examined show minimum mutator utilizations of more than 50%
within arbitrary time intervals of 1 ms [15].

4. Experimental Results
4.1 Measurement Platform
To demonstrate the feasibility and efficiency of our algorithm, we
extended a hardware prototype of the initial system. This prototype
consists of the main processor and the garbage collection coproces-
sor, both of which are jointly realized on an Altera Stratix II device
(EP2S60 [1]), of standard DDR-SDRAM modules for main mem-
ory, and of various peripheral devices, including an Ethernet inter-
face for file access via NFS. The entire prototype is synchronously
operated at 25 MHz.

The main processor is realized as a 3-way multiple-issue explic-
itly parallel RISC, with 8K instruction cache, 8K data cache, and
2K attribute cache. The garbage collection coprocessor disposes of
a microcode memory of 256 words with 96 bit each. The coproces-
sor uses approximately 20% of the chip area. The extensions for
our algorithm occupy less than 3%.

For clock-cycle accurate measurements, we integrated a mon-
itoring framework into the main FPGA that allows to trace up to
32 internal processor signals. By means of a dedicated, on-board
Gigabit Ethernet interface, the measurement data is transmitted at
a constant rate of 800 MBit/s to a measurement PC, written to mul-
tiple hard disks in parallel, and analyzed offline.

On the software side, we have developed a static Java compiler
that translates standard Java bytecode to the processor’s native
machine code. Moreover, we realized a subset of the Java class
libraries supporting text-based applications in order to facilitate the
execution of representative programs.

4.2 Measurement Results
In a first experiment, we measured the smallest possible heap size
for various applications1 and for both garbage collection algorithms
(Table 1). In case of the copying algorithm, the measured heap
size exactly corresponds to twice the maximum amount of live
data. In case of our algorithm, the measured heap size exactly
corresponds to the maximum amount of live data plus the memory
required for the corresponding handle space. The results show that
the minimum memory overhead caused by garbage collection is
always 100% of the maximum amount of live data in case of the
copying algorithm, while it is only 1% to 27% in case of our new
algorithm. Correspondingly, our mark-compact algorithm reduces
the minimum memory overhead of garbage collection by a factor

1 Our system does currently not support threads, reflection and dynamic
class loading. This restricts the range of benchmarks we are able to run.

of 3 at minimum and by a factor 6 on average for all the applications
we have examined. This gain is a direct consequence of replacing
Baker’s tospace by our handle space and depends on the average
size of objects used by an application.

program
minimum heap size

(% of max. live data)
copying collector m.c. collector

cup 17420 K (200%) 11062 K (127%)
db 20692 K (200%) 12622 K (122%)
javac 11212 K (200%) 6671 K (119%)
javacc 3870 K (200%) 2361 K (122%)
jflex 4096 K (200%) 2168 K (106%)
jlisp 266 K (200%) 144 K (109%)
search 10376 K (200%) 5240 K (101%)

Table 1. Minimum heap size required by both collectors

Next, we measured the runtime overhead of garbage collection
for various relative heap sizes. For this purpose, we first provided
each application with virtually infinite memory, deactivated the
garbage collector, and measured the corresponding execution times
toff. Then, we limited the heap to various relative sizes, i.e. sizes
relative to the maximum amount of live data, activated the garbage
collector, and measured the corresponding execution times in order
to determine the garbage collection runtime overhead. The results
are given in Table 2. Values printed in bold indicate real-time
behavior without mutator starvation.

For all applications we examined, our new algorithm achieves
real-time behavior with less memory than the copying algorithm.
In particular, our algorithm shows real-time behavior with relative
heap sizes as little as 200% for some applications, whereas the
copying algorithm hardly allows to execute applications within this
size.

Under relevant operating conditions (i.e. with appropriate mem-
ory headroom), the runtime overhead caused by our new collector
is as little as few percent only. Furthermore, this overhead is smaller
than the overhead caused by the copying collector in the vast ma-
jority of cases. In the remaining cases, the difference is negligible.

By means of a third experiment, we aimed at evaluating the
overall efficiency of the two collectors. For this purpose, we run
each application with a heap size large enough to allow real-time
behavior for both algorithms and measured the mean duration of
a garbage collection cycle (Figure 11) as well as the fraction of
total application execution time with garbage collection activities
(Figure 12).

program GC relative heap size (%)
200% 300% 400% 500%

cup cop. 697.7% 15.8% 2.6% 0.3%
toff=49.4s m.c. 38.8% 10.9% 1.5% 1.0%
db cop. 58.9% 3.1% 3.1% 2.2%
toff=239.0s m.c. 6.6% 1.5% 0.8% 0.4%
javacc cop. 271.8% 22.1% 5.1% 0.3%
toff=18.9s m.c. 37.4% 13.0% 4.8% 1.2%
javac cop. 115.7% 0.9% 0.5% 0.2%
toff=31.4s m.c. 4.7% 2.0% 0.7% 1.0%
jflex cop. 7.1% 0.2% 0.1% 0.0%
toff=25.2s m.c. 2.1% 0.2% 0.0% 0.0%
jlisp cop. 0.9% 0.2% 0.0% 0.0%
toff=59.3s m.c. 0.6% 0.2% 0.1% 0.0%
search cop. 61.1% 0.1% 0.0% 0.0%
toff=47.8s m.c. 0.0% 0.0% 0.0% 0.0%

Table 2. Runtime overhead versus relative heap size

0

1000

2000

3000

4000

5000

se
ar

chjlis
p

jfle
x

jav
ac

jav
ac

cdb

copying collector
mark-compact collector

cu
p

m
ea

n
du

ra
tio

n
of

co
lle

ct
io

n
cy

cl
es

(m
s)

Figure 11. Mean duration of collection cycles

Figure 11 shows that a collection cycle of our collector lasts 1.5
to 3 times as long as that of the copying collector. This difference is
not surprising since our algorithm requires three passes whereas the
copying collector requires only one. On the other hand, the results
in Figure 12 reveal that our algorithm reduces the relative duration
of garbage collection activities by a factor of 1.1 to 4.5 (1.7 on
average). In conclusion, and despite longer collection cycles, our
collector, provided with the same amount of memory as the copying
collector, increases the overall efficiency of garbage collection, i.e.
it collects more garbage per time unit.

mark-compact collector
copying collector

0

5

10

15

20

25

30

35

40

se
ar

chjlis
p

jfle
x

jav
ac

jav
ac

cdbcu
p

fra
ct

io
n

of
tim

e
w

ith
co

lle
ct

or
ac

tiv
iti

es
(%

)

Figure 12. Collector activity (% of application execution time)

5. Related Work
This section summarizes related work in two distinct areas. First,
it gives an overview of real-time compacting collectors without
semispaces. Second, it presents related architectures for hardware-
supported garbage collection.

5.1 Compacting Collectors without Semispaces
In the past decade, researchers aimed at developing real-time com-
pacting garbage collectors that use less memory than semispace-
based copying collectors. The corresponding algorithms mainly
differ in the method they use for incremental compaction.

A number of algorithms known in that context actually elude the
compaction problem. Instead of moving objects to close the holes
left by dead objects, they compose objects of constant-sized blocks
that are always left in their place. For example, Siebert realized a
real-time Java system based on this principle [24]. Approaches like
this, however, do not actually solve the fragmentation problem. In-
stead, they merely trade external for internal fragmentation. Apart
from that, they also cause significant runtime overhead since appli-
cations must follow linked lists or tree structures for every single
object and array access.

Other algorithms only compact a small region of the heap at
a time in order to reduce the pauses caused by compaction. This
approach has first been proposed in [11] and was later extended
for parallel compaction [4] or implemented by taking advantage
of virtual memory page protection for concurrent pointer update
operations [19]. Unfortunately, the basic idea has never been im-
plemented, and the other two proposals must, every now and then,
compact the entire heap in a stop-the-world fashion.

MC2[22] is an incremental generational copying algorithm
based on Mark-Copy [21]. It allows heap compaction without
semispaces. To achieve this, MC2 splits the old generation into
a fixed number of equally-sized windows. Each major collection
cycle consists of an incremental mark phase and several stop-the-
world copy steps. At each copy step, the live content of one or more
source windows is copied into a single free target window. Pointer
updates are performed with window-specific remembered sets built
during the mark phase. MC2 is able to limit the size of the re-
membered sets by combining them with card-marking techniques.
Experimental results show maximum pause times in the order of
40 ms. However, because the algorithm guarantees an upper bound
on the space overhead, it cannot predictably limit the duration of
pauses caused by the collector.

Bacon et al. [2] propose a mostly non-moving real-time col-
lector. To bound the duration of garbage collection pauses, they
split large objects into so-called arraylets. For incremental com-
paction, they rely on Brooks-style indirections [5]. Experimental
results show memory overheads of 1.2 to 2.5 and runtime over-
heads in the order of 40%. On a 500 MHz processor, they managed
to limit garbage collection pause times to a maximum of 6 ms.

The algorithm that most closely resembles the work presented in
this paper has been proposed by Larose and Feeley [7, 12]. Like our
algorithm, their algorithm realizes fine-grained Steele-style com-
paction by means of conditional address generation and object han-
dles. In contrast to our work, however, they have to realize all the
synchronization mechanisms by compiler-inserted code sequences.
As a second difference, they use a fixed-size handle space that must
be configured to 30% of the heap for worst-case scenarios. Third,
objects are always accessed through handles, i.e. handles and ob-
jects are always allocated and reclaimed at the same time, respec-
tively. Finally, their handles are exclusively used as indirections,
i.e. they cannot be used as tracing queue entries. Instead their algo-
rithm requires a supplementary field in each object which further
increases the effective memory overhead. Unfortunately, however,
experimental results show prohibitive runtime overheads, ranging
from factors of 1.8 up to 8 (3 on average).

5.2 Hardware-Supported Garbage Collection
Hardware support for garbage collection has been introduced by
language-directed architectures in the 1980s. Examples include
processors specialized for LISP (e. g. Symbolics [16]) or Smalltalk
(e. g. Mushroom [26]). All these architectures support read or write
barriers in hardware and primarily focus on improving a system’s
throughput and interactive response rather than guaranteeing worst-
case latencies.

The best known hardware-supported garbage collector for real-
time applications is the garbage-collected memory module pro-
posed by Nilsen and Schmidt [23]. The module connects to a stan-
dard microprocessor and accommodates the actual memory de-
vices, a private microprocessor, and a number of custom devices,
including two elaborate CAM-like devices. With respect to real-
time performance, the authors report worst-case latencies of typ-
ically 16,000 clock cycles at the beginning of a garbage collec-
tion pass. Unfortunately, the hardware costs for the memory mod-
ule are prohibitive, particularly for most embedded applications.
Furthermore, the module’s data throughput is considerably inferior

to that of standard memory, especially when compared with mod-
ern, burst-oriented memory devices. Lastly, a significant overhead
is caused by communicating the location of pointers to the module,
most notably regarding stack operations [18].

Recently, triggered by the success of Java, various architectures
with native Java bytecode execution have been proposed. Surpris-
ingly, they offer little to no support for garbage collection. The
PicoJava specification [25], for example, offers some basic support
for hardware write barriers and for indirections via handles, but has
never been realized in actual hardware. Komodo, another approach,
focuses on hardware-supported multithreading [20] and realizes
garbage collection by means of a dedicated software thread, sup-
ported by a microcoded write barrier. Unfortunately, however, Ko-
modo’s garbage collector suffers from enormous amounts of mem-
ory and runtime overhead and neglects the problem of incremental
root set processing and incremental compaction.

6. Conclusions
In this paper, we have introduced a novel garbage collection algo-
rithm and presented an efficient hardware-supported implementa-
tion. The algorithm combines the incremental compaction feature
of copying collectors with the memory efficiency of mark-sweep
collectors.

Thanks to the abstraction provided by an object-based architec-
ture, we have been able to implement our algorithm for a garbage
collection coprocessor that operates completely in parallel to appli-
cations executed on a main processor. Furthermore, all the synchro-
nization mechanisms required by our algorithm, while potentially
expensive on stock hardware, could be realized by relatively sim-
ple hardware and without any software support. These mechanisms
include read barrier checking and read barrier fault handling, fine-
grained incremental compaction, and indirections via handles.

Measurements of Java programs on an FPGA-based prototype
show that our new collector outperforms a corresponding copying
collector in every respect. It causes less runtime overhead, achieves
real-time behavior with smaller heap sizes, and is generally more
efficient than the copying collector, i.e. it collects the same amount
of garbage in less time.

References
[1] Altera. STRATIX II Device Family Data Sheet, Apr. 2006.

[2] D. F. Bacon, P. Cheng, and V. Rajan. A real-time garbage collecor
with low overhead and consistent utilization. In Conference Record of
the Thirtieth Annual ACM Symposium on Principles of Programming
Languages, ACM SIGPLAN Notices, New Orleans, LA, Jan. 2003.
ACM Press.

[3] H. G. Baker. List processing in real-time on a serial computer.
Communications of the ACM, 21(4):280–94, 1978.

[4] O. Ben-Yitzhak, I. Goft, E. Kolodner, K. Kuiper, and V. Leikehman.
An algorithm for parallel incremental compaction. In D. Detlefs,
editor, ISMM’02 Proceedings of the Third International Symposium
on Memory Management, ACM SIGPLAN Notices, pages 100–105,
Berlin, June 2002. ACM Press.

[5] R. A. Brooks. Trading data space for reduced time and code space
in real-time garbage collection on stock hardware. In G. L. Steele,
editor, Conference Record of the 1984 ACM Symposium on Lisp and
Functional Programming, pages 256–262, Austin, TX, Aug. 1984.
ACM Press.

[6] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: An exercise in cooperation.
Communications of the ACM, 21(11):965–975, Nov. 1978.

[7] D. Dubé, M. Feeley, and M. Serrano. Un GC temps réel semi-
compactant. Journées Francophones des Langages Applicatifs, pages
165–181, Jan. 1996.

[8] B. K. Haddon and W. M. Waite. A compaction procedure for variable
length storage elements. Computer Journal, 10:162–165, Aug. 1967.

[9] R. Jones, editor. ISMM’98 Proceedings of the First International
Symposium on Memory Management, volume 34(3) of ACM
SIGPLAN Notices, Vancouver, Oct. 1998. ACM Press.

[10] H. B. M. Jonkers. A fast garbage compaction algorithm. Information
Processing Letters, 9(1):25–30, July 1979.

[11] B. Lang and F. Dupont. Incremental incrementally compacting
garbage collection. In SIGPLAN’87 Symposium on Interpreters and
Interpretive Techniques, volume 22(7) of ACM SIGPLAN Notices,
pages 253–263. ACM Press, 1987.

[12] M. Larose and M. Feeley. A compacting incremental collector and
its performance in a production quality compiler. In Jones [9], pages
1–9.

[13] M. Meyer. A novel processor architecture with exact tag-free pointers.
IEEE Micro, 24(3):46–55, 2004.

[14] M. Meyer. An on-chip garbage collection coprocessor for embedded
real-time systems. In 11th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications,
Hong Kong, Aug. 2005.

[15] M. Meyer. A true hardware read barrier. In ISMM’06 Proceedings of
the Fifth International Symposium on Memory Management, Ottawa,
June 2006.

[16] D. A. Moon. Architecture of the Symbolics 3600. In Proceedings of
the 12th Annual International Symposium on Computer Architecture,
pages 76–83, Boston, MA, June 1985.

[17] K. D. Nilsen. Cost-effective hardware-assisted real-time garbage
collection. In Workshop on Language, Compiler, and Tool Support
for Real-Time Systems, PLDI94, June 1994.

[18] K. D. Nilsen and W. J. Schmidt. A high-performance hardware-
assisted real time garbage collection system. Journal of Programming
Languages, 2(1), 1994.

[19] Y. Ossia, O. Ben-Yitzhak, and M. Segal. Mostly concurrent
compaction for mark-sweep GC. In A. Diwan, editor, ISMM’04
Proceedings of the Fourth International Symposium on Memory
Management, ACM SIGPLAN Notices, Vancouver, Oct. 2004. ACM
Press.

[20] M. Pfeffer, T. Ungerer, S. Fuhrmann, J. Kreuzinger, and U. Brink-
schulte. Real-time garbage collection for a multithreaded Java
microcontroller. Real-Time Systems, 26(1):89–106, 2004.

[21] N. Sachindran and E. Moss. MarkCopy: Fast copying GC with
less space overhead. In OOPSLA’03 ACM Conference on Object-
Oriented Systems, Languages and Applications, ACM SIGPLAN
Notices, Anaheim, CA, Nov. 2003. ACM Press.

[22] N. Sachindran, J. E. B. Moss, and E. D. Berger. MC2: High-
performance garbage collection for memory-constrained environ-
ments. In OOPSLA’04 ACM Conference on Object-Oriented Systems,
Languages and Applications, ACM SIGPLAN Notices, Vancouver,
Oct. 2004. ACM Press.

[23] W. J. Schmidt and K. D. Nilsen. Performance of a hardware-
assisted real-time garbage collector. In International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 76–85, Oct. 1994.

[24] F. Siebert. Guaranteeing non-disruptiveness and real-time deadlines
in an incremental garbage collector. In Jones [9], pages 130–137.

[25] Sun Microsystems. picoJava-II Programmer’s Reference Manual,
Mar. 1999.

[26] I. W. Williams and M. I. Wolczko. An object-based memory
architecture. In A. Dearle, G. M. Shaw, and S. B. Zdonik, editors,
Implementing Persistent Object Bases: Principles and Practice
(Proceedings of the Fourth International Workshop on Persistent
Object Systems), pages 114–130, Martha’s Vineyard, MA, Sept.
1990. Morgan Kaufman.

	Introduction
	Algorithm
	Baker's Algorithm
	Analyzing Baker's Algorithm
	A New Mark-Compact Algorithm
	Overview
	Heap Layout
	Mark Phase
	Compaction Phase
	Cleanup Phase

	Implementation Issues

	Implementation
	Initial System
	Main Processor
	Garbage Collection Coprocessor
	Synchronization Mechanisms

	Extensions for our Algorithm
	Main Processor
	Coprocessor
	Synchronization Mechanisms

	Summary

	Experimental Results
	Measurement Platform
	Measurement Results

	Related Work
	Compacting Collectors without Semispaces
	Hardware-Supported Garbage Collection

	Conclusions

