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Abstract. The method of emulation is an attractive approach in order
to evaluate the performance of communication networks. Compared to
simulation, it is especially beneficial when real-world components, e.g.,
applications or protocols should be included. In this paper, we present
the new emulation environment IKREmuLib, which allows for a seamless
integration of both the emulation and the simulation domain by exploit-
ing the same system model implementation. By doing so, we avoid the
disadvantages of either approach while combining the benefits of both.

1 Introduction

In order to develop new or improve existing architectures and protocols for fu-
ture and deployed communication networks, it is essential to evaluate their per-
formance before they are deployed. Often, it is impossible to actually build a
prototype of the complete system and make live-measurements. Likewise, it is
often not feasible to test new algorithms in existing networks, since reliable net-
work operation must be ensured. A common approach is therefore to develop a
simplified model of the complete system and evaluate the performance by means
of simulation.

The most commonly used concept for network simulation is the event-driven
simulation [1]. The simulation may be done at different levels, i.e. at the packet
level or at the flow level. In a packet level simulation, individual packets (e.g., IP
packets) are generated by traffic generators and transmitted through the mod-
eled network towards a traffic sink. In flow level simulations, a traffic flow is
characterized by a time duration or a traffic volume, which occupies a set of
resources for a certain period of time.

The main advantages of the simulation approach are the reproducibility of
results and the possibility to easily explore a large parameter space. Moreover,
it is usually easy to experiment with complex algorithms, since the simulation
environment provides network status information, which may not be accessible
as easily in a real system.

On the other hand, one of the problems is the effort it takes to model com-
plex systems and protocols. Especially for the performance evaluation of access
links, it is important to have fine-grained traffic models. This applies especially
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to sources with significant user interaction, like for example web traffic using the
Hyper Text Transfer Protocol (HTTP). When looking at such higher layer proto-
cols, the parameter space for their configuration is usually very large. Moreover,
there are often diverse but important details, which may range from variations in
the protocol implementation to differences in the actual traffic generation. This
makes it difficult to model such traffic sources for simulation purposes. It may
therefore be advantageous to include a real world component in the simulation
environment.

Integrating a real world component, such as code pieces from a web browser,
into a simulation is a very complicated task. An alternative and often very ben-
eficial approach is to use the method of emulation, which basically combines
the simulation domain with real world components [2]. In principle, with em-
ulation, a simulation is enriched by an interface, which enables the simulation
to communicate with real network components [3], turning it into an emulation.
Additionally, some of the protocol components involved in the communication
with these real network elements or the operation of the elements itself may re-
quire the emulation to be performed in real-time. One example of an emulation
environment is the emulation facility of the Berkeley network simulator ns-2 [4].

To a certain degree, the method of emulation makes it unnecessary to model
critical parts of the overall system. This not only simplifies the whole perfor-
mance evaluation process, it also increases the credibility of the results. In a
pure simulation environment, the quality and credibility of results may be a
problem due to simplifications or flaws, e.g. in the traffic models, such as inade-
quate or inprecise models, or even unsuitable random number generators. This
problem was studied in [5], where it was found that about 70% of all publications
which base their results on simulations lack credibility.

The main problem with network emulation is the inherent timing error. In
an event-driven environment each event is scheduled for one particular infinitely
short time instant, and several events may be scheduled for the same time in-
stant. Since the execution of an event is not completed in zero time, the emulation
usually lags behind in its execution, resulting in a timing error. The effect of such
timing errors was studied in [6] for certain scenarios and ns-2.

In this paper, we present an integrated simulation and emulation environment
IKREmuLib, based on the event-driven simulation library IKRSimLib [7,8]. The
main goal of our architecture is to allow a quick transition from simulation to
emulation and vice versa with the same model and without any code modifica-
tion. We achieve this by a strictly modular design of the emulation feature on
top of the existing simulation library.

The design philosophy of the IKREmuLib is to intercept incoming IP packets,
filter them according to a set of rules, and then pass them to the system model,
where they are processed according to the system behavior, i.e., they are delayed
or dropped. Finally, packets which are not dropped are sent out to the respective
network interface. We achieve high timing accuracy by splitting the system into
two threads, one of which being responsible for the model execution, the other
one being responsible for capturing and time-stamping the IP packets.
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The remainder of the paper is structured as follows. In section 2 we give
an overview of the architecture and all relevant concepts of the IKRSimLib.
We present the basic architecture of the IKREmuLib in section 3 and detail
the implementation in section 4. The accuracy and performance of the library
is evaluated in section 5, and the application to the emulation of a Universal
Mobile Telecommunications System (UMTS) Radio Access Network is described
in section 6. Finally, section 7 concludes the paper.

2 IKRSimLib Architecture

The IKR Simulation Library (IKRSimLib) [8] is a tool which is mainly used
for event-driven simulation of complex systems in the area of communications
engineering. It is deployed as a C++ class library and was first presented in [7].
Since the initial design the library has been continuously enhanced and improved.
It has been successfully used for performance evaluation in various projects and
publications from different areas of communication networks research, e.g. IP,
ATM, photonic, mobile, automotive and signaling networks.

IKRSimLib concepts and components can be structured in three main areas:
basic simulation support, modeling, and standard system entities.

– Basic simulation support includes concepts and components for event han-
dling, simulation control, distribution-oriented random number generation,
as well as for online statistical evaluation. For flexibility, this also comprises
a parameter file parser and an output concept.

– Modeling is facilitated by the construction of hierarchical models from indi-
vidual components and—for this paper essential—the standardized exchange
of messages among those components. This message exchange employs so-
called ports, which are used to define a generic external interface of a model
component, based on a simple message transfer protocol.

– Finally, standard system entities like traffic generators, queues, servers, mul-
tiplexers, traffic sinks etc. are provided to ease model implementation.

Illustrating those concepts, Fig. 1 depicts a simple queueing theory node
model comprising generator, single server queue, and traffic sink standard system
entities. Simulation messages are passed from component to component using
the ports and the message transfer protocol.

The simulation library is based on the principle of event-driven, discrete time
simulation. Commonly, physical time, simulation time, and real-time are distin-
guished when characterizing simulation/emulation systems. Physical time is the
time experienced by the system under study while simulation time is its repre-
sentation in the simulation/emulation obtained from a bijective transformation.
Real-time refers to time experienced by the simulation/emulation host system
during execution. In general it depends on the performance of the host system.

In discrete time models, state transitions are the instances in time at which
all system functionality is executed. Thus, at state transitions both physical as
well as simulation time can advance according to the system under study while
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Fig. 1: Message based simulation

real-time advances continuously on the host system. In contrast, ”idle time”
between state transitions is bridged and no further processing, i.e., real-time, is
needed for this.

For the remainder of this paper, we will not distinguish between physical
and simulation time due to their equivalence via the bijective transformation.
Also, we will use the term simulation time for the emulation as well as for the
simulation case.

All currently pending events in the system are managed by a central calendar.
An event loop in the simulation control takes care of the in-order processing of
events in the calendar, i.e., every time an event finished processing it advances
time and executes the next event as depicted in Fig. 2.

The state transitions are described by event objects. These events are charac-
terized by their event time and the entity that will handle the event. An example
of an event could be the arrival of a request at the generator or the end of service
for a request in a service unit. In the former case, the processing of the event
request arrival triggers construction of a simulation message in the generator as
well as its transfer to the adjacent component via the generator’s output port.

3 Architecture of the IKREmuLib extension

3.1 Functional Requirements

When making the transition from simulation to emulation or vice versa, we
desire to be able to reuse existing system models without the need for extensive

ProcessPendingEvents

set simulation time to 
time of next event

process next event

Fig. 2: Event processing loop
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modifications. If, additionally, we can use the same program code of a system
for both simulation and emulation without any modifications, we have obtained
an integrated simulation and emulation environment.

For ease of use, we decided to implement the emulation’s interface at layer
3, i.e., it intercepts network packets at the IP layer and delays or drops them as
determined by the system model. This implies that the emulation host is able
to act as a router for IP packets. It is therefore necessary to filter incoming IP
packets according to a set of rules in order to determine whether they are meant
to be treated by the emulation system, and which path they are supposed to take
through it. Alike, it is necessary to route outgoing packets to the appropriate
network interface and destination host.

For many applications, an emulation system has to satisfy real-time require-
ments in order to model the real system behavior correctly. This is for example
the case if timer-controlled mechanisms or protocols, such as the Transmission
Control Protocol (TCP), are involved. Strictly, this means that every module of
the system model has to run as fast or faster than real-time. A relaxed formu-
lation would only require the total transfer time of the emulation system to be
real-time. In detail, the following inaccuracies can be distinguished:

– model imposed inaccuracies due to finite event execution times
– operating system imposed inaccuracies
– inaccuracies due to asynchronous packet arrivals

Model imposed inaccuracies are hard to alleviate. In fact, the only possibili-
ties are to optimize the model implementation, use a faster emulation machine
or to parallelize the model execution. Another approach is to pre-execute certain
events. However, this is hard to realize as dependencies between different events
and packet arrivals are often hard to determine.

Inaccuracies imposed by the operating system usually result from a multi-
tasking environment. The only safe way to solve this issue is to use a real-time
operating system, such as RTLinux [9]. As an initial step, we implemented our
emulation library on top of a non-real-time operating system. The transition
towards a real-time operation system could be done in the future without the

Clients 

e.g. video player, web browser
Emulation 

e.g. UMTS RAN emulation
Servers 

e.g. video server, web server

100Mbps 
Ethernet

100Mbps 
Ethernet
100Mbps 
Ethernet
100Mbps 
Ethernet

100Mbps 
Ethernet
100Mbps 
Ethernet

Fig. 3: Emulation setup
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Fig. 4: Replacing the IKRSimLib generators with IKREmuLib generators

need for basic changes in the design of the emulation library. In section 5 we will
show by means of measurements that we can achieve sufficient accuracy even
with a non-real-time operating system.

Finally, inaccuracies due to asynchronous packet arrivals require an exact
time-stamping to minimize timing uncertainty regardless of the current emula-
tion state.

Fig. 3 shows an example of the basic emulation setup which we target at. The
actual emulation system runs on the emulation host, which is a standard PC.
One or several PCs running client and server applications, respectively, connect
to the emulation PC via Ethernet. In general, the topology of the setup can be
arbitrary, while the only constant is the central emulation PC.

3.2 Transition from simulation to emulation

As mentioned in section 3.1 we aim at a seamless and effortless integration of
a system model into both simulation and emulation. From the system model
point of view, a network interface primarily is a traffic source and a traffic sink.
Starting from the simulation model introduced in Fig. 1, we will therefore replace
the existing traffic generators and traffic sinks with new types of generators and
sinks connecting to network interfaces.

This transition is shown in Fig. 4. The new traffic generator can logically
be separated into two parts. The first part connects to the network interface
and filters all relevant packets on the IP layer. The second part encapsulates the
IP packets into emulation messages similar to those generated by conventional
IKRSimLib traffic generators, which can directly be sent through the system
model. Likewise, the new traffic sink can be separated into one part decapsulating
the IP packet from a received model message and a second part routing the IP
packet to the appropriate network interface. As each emulation message carries
a reference to the corresponding IP packet, we can even access and modify the
IP packet content at any point in the model. This also allows the creation of
new IP packets and use the emulation system as a protocol endpoint.

3.3 Real-time synchronization

Figure 5 shows an example of a simulation timeline. The bottom time axis of
the figure represents the simulation time, while the upper time axis represents
the real-time which actually passes during the execution of events. While the
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execution of an event happens in zero simulation time, it may require a significant
real-time period. For instance, event 2 cannot start processing in time, as event
1 has not been finished yet. Also, in simulation, whenever an event has been
processed, the calendar immediately progresses to the next event. In contrast,
in Fig. 5, the emulation is halted after the processing of event 2 has completed
until the real time matches the simulation time t3 for which event 3 is scheduled.

Both issues have to be considered when synchronizing simulation time with
real time. They also highlight two critical problems that the synchronization of
real-time and simulation time brings about when dealing with the arrival of new
packets at network interfaces.

First, while the simulation is halted, we need to be able to detect the arrival
of a new packet. In [4], an active wait loop was used, which continuously checks
whether the real-time matches the time of the next scheduled event or a new
packet has arrived at a network interface. This is a practical and very accurate
approach, which is well suitable on a machine dedicated to emulation. However, it
permanently consumes all available processor resources, which imposes problems
to applications running in parallel, such as for example a visualization tool.

The second problem arises upon the arrival of a packet as is depicted in Fig. 5.
The packet arrives while event 3 is being processed. As already mentioned, the
creation of a simulation message within a generator is associated with an event,
within which the message is instantiated and forwarded to the generator’s output
port. As the emulation is busy processing event 3, the packet arrival can only
result in the generation of the indicated packet event as soon as event 3 is
completed, i.e., at time tp,1. It is obvious that this implies a significant timing
error. Therefore, we need to capture the exact time instant of the packet arrival
in order to be able to post the event as close to the time of packet arrival as
possible, such as at time tp,2 in Fig. 5.

In order to achieve this, we completely separate the packet reception and
the model execution using a multi-threaded design. In this design, a listener
thread is solely responsible for capturing and time stamping arriving packets,
while a second model thread is mainly responsible for the model execution and
transmission of packets. This concept is illustrated in Fig. 6. The listener thread
connects to the network interfaces. After capturing an IP packet, it is filtered
according to a set of rules. If not dropped by this filter, a time stamp is assigned

real time

simulation time

event 1 event 2 event 3

packet 
arrival

packet event

real processing 
time of events

t3t2t1 tp,1tp,2

Fig. 5: Relation of real-time and simulation time
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to the packet and it is placed in a queue. The packet arrival is signaled to the
model thread, which creates a new event and dispatches the arriving packet to
the corresponding traffic generator.

The transmission of an IP packet at the sink is less critical and can directly
be done by the model thread. The kernel routing functionality is used in order
to route the packet to the appropriate network interface.

4 IKREmuLib Implementation

4.1 Overview

In this section, we will detail the implementation of the IKREmuLib. We will
first describe the framework used for our implementation in section 4.2. Next,
we will describe the main loops of the listener and model threads in section 4.3
and 4.4, respectively. Afterwards, we illustrate the filter concept and dispatching
procedure of packets to generators in section 4.5. Finally, we will elaborate on
the synchronization between the two program threads in section 4.6.

4.2 Packet capturing and multithreading

The multithreaded design of the IKREmuLib is based on the Portable Oper-
ating System Interface (POSIX) threads [10, 11]. POSIX provides a powerful
and easy-to-use interface for multithreaded programming. Besides the actual
thread management, this includes support mechanisms such as mutual exclu-
sion functionality (mutex) and conditional wait operations [11]. Virtually all
UNIX derivates implement threads that conform to the POSIX specification,
which makes it an attractive environment to use for our purposes.

As outlined in section 3.1, we require the emulation system to work as a router
at the IP layer. Thus, in order to capture all IP packets arriving at the network
interface and not only those destined for the emulation host itself, we need to
access the network interfaces at the data link layer (i.e., at the Ethernet level)
before any routing decision is performed. Packets are usually being captured in

Model Thread

simulation model

Listener Thread

packet 
filter

event 
processing 

loop

Generators

calendar

Sinks

Fig. 6: Separation of emulation library into threads
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the kernel-space of the operating system, from which they have to be copied
into the user-space, where the emulation is executed. In order to minimize the
overhead, it is desirable to filter the packets directly in the kernel-space and copy
only relevant packets to user-space.

The regular UNIX socket interface is not an appropriate way to achieve this
goal. Instead, various other possibilities exist, such as the BSD packet filter
(BPF) [12] available for BSD UNIX, the Data Link Provider Interface (DLPI)
for System V [13], or the Linux PF PACKET interface. All of these approaches
are dependent on the specific UNIX derivate they are used with. In contrast, the
packet capture library pcap [14] is a publicly available open-source alternative,
which not only provides kernel-space packet filtering but which also is available
for practically all UNIX derivates. Thus, we selected the pcap library for our
implementation.

4.3 Listener thread

In this section, we will detail the packet reception procedure within the listener
thread. Figure 7 shows a simplified SDL diagram of the listener thread’s main
loop. A standard select() UNIX system call [13] is used to perform a blocking
wait operation for the arrival of new data on one of several network interfaces.
Upon the arrival of a new packet, it is fetched using the pcap library’s pcap next()
function call. A timestamp is assigned to the packet and it is placed in the listener
thread’s output queue. The arrival of the new packet is signaled to the model
thread using a condition variable and the pthread cond signal() function call [11].
Afterwards, the program flow returns into the waiting state with the select() call.

For the synchronization of the two threads, we additionally need a mutex
to prevent certain conditions, which would lead to an illegal emulation state.
The elements of this mechanism are shaded in Fig. 7 and will be detailed in
section 4.6.

4.4 Model thread

The model thread is responsible for the actual model execution. Hence, it also
performs the event processing loop described in section 2. This loop has to be
extended in order to process events in real-time and be able to interact with
the listener thread. Figure 8 shows the simplified SDL diagram of the model
thread’s real-time event processing loop. Again, the shaded mutex elements will
be discussed in section 4.6.

We will describe the loop by assuming that there is an initial event in the
calendar. First, the relative time to this event is determined and converted to
real-time. If this difference is smaller or equal to zero, the event is immediately
processed after all waiting packets have been fetched and dispatched from the
listener thread’s output buffer. The cleaning of the listener thread’s buffer before
the event processing is necessary to prevent the emulation from only processing
events which follow up too closely on each other without dispatching new packets.

In case the relative time to the next event is larger than zero, the simulation



Marc C. Necker, Christoph M. Gauger, Sebastian Kiesel, Ulrich Reiser

Listener Thread

select()

packet arrival

acquire calendar mutex

release calendar mutex

assign timestamp to packet

append packet to buffer

signal packet arrival 
to model thread

Fig. 7: Listener thread main loop
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Fig. 8: Real-time event processing loop

has to be halted until the real-time matches the simulation time of the next
event. This is done in the right branch of Fig. 8 using the pthread cond timedwait
function call. This call returns as soon as a given time period has elapsed or a
signal from the listener thread has been received. In either case, an event needs
to be processed. Hence, we will dispatch any waiting packets, set the simulation
time to the time of the next event and process it.

4.5 Filtering and packet dispatching

In the kernel space, the pcap library filters those packets which are to be pro-
cessed by the emulation library and ignores all other packets. Relevant packets
are identified by an Ethernet destination MAC address equal to the emulation
host’s MAC address, but an IP address different from any of the emulation host’s
IP addresses.

Dispatching of packets to different traffic generators is done according to
destination and source IP addresses. Additionally, the packets can be dispatched
based on their TCP or UDP port numbers, if available. Each generator needs
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to be assigned at least a destination or source IP address, or both. Alike, a
generator may also be assigned a destination and/or source port number. When
dispatching a packet, the generator with the most precise match for the packet
is identified, and the packet is forwarded to it.

4.6 Process synchronization

The multithreaded design as it was presented up to now, has the risk of resulting
in an illegal emulation state. Consider the scenario shown in Fig. 9. The figure
shows two time lines representing the real-time. The left time line shows those
periods where the listener thread is being executed by the CPU, and the right
time line those periods assigned to the model thread. A new packet arrives and
is assigned a time stamp with value t0 by the listener thread. Before it can be
appended to the listener thread’s buffer, the control is transferred to the model
thread. The model thread processes the next event at time t1 > t0, since the
listener thread’s buffer is still empty. After another control transfer, the packet
is appended to the listener thread’s buffer. As soon as the model thread gets to
the point where it fetches the packet from the buffer and posts the corresponding
packet event for time t0, this results in an illegal emulation state, as t0 lies in
the past compared to the current simulation time.

This situation can be avoided by introducing a mutual exclusive lock mecha-
nism in the calendar. This calendar mutex is acquired and released as indicated
in the SDL diagrams of Fig. 7 and Fig. 8. It is important to note that the
pthread cond timedwait function offers the possibility to atomically unlock the
mutex and wait for a possible signal from the listener thread. Alike, the mutex
is re-acquired upon function exit. This interconnection between the signaling of
the condition variable and the mutex is necessary to avoid race conditions [11].

packet arrival

assign timestamp t0
check buffer: empty

set system time to 
next event time t1>t0

control transfer

control transfer
append packet 

to buffer control transfer process next event

check buffer: read packet

post packet event 
to time t0event time t0 

< 
simulation time t1

real−time real−time

Listener Thread Model Thread

Fig. 9: Mutex scenario
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5 Performance Evaluation

In order to evaluate the accuracy of the IKREmuLib, we performed measure-
ments using a very fundamental system model. The measurement setup is shown
in Fig. 10. The emulation PC hosts the emulation environment with the sys-
tem model, consisting of an infinite server with constant service time TD. Bulk
UDP traffic was generated with a separate PC, with length L UDP-packets be-
ing transmitted at a rate of r packets/s. The transit time of the UDP packets
through the emulation system was measured at the Ethernet-level using an Agi-
lent Internet Advisor. In particular, we evaluate the absolute timing error of the
emulation based on its complementary cumulative distribution function (ccdf)
and its mean value. All ccdfs were obtained with a total of 500,000 transmitted
packets per measurement.

For all measurements, we use standard Linux installations with kernel version
2.6. This kernel version provides improved process scheduling mechanisms com-
pared to older Linux kernels. This is of advantage for minimizing the operating
system imposed inaccuracies described in section 3.1.

Ideally, the measured delay should be exactly TD. However, due to delays
introduced by the network interfaces and the inaccuracies discussed in section
3.1, the actual packet delay will be larger. In the following, we set TD to 10ms
and compare the actual packet delay to the desired delay TD. Additionally, we
compare the measured error with the error te tracked by the emulation itself. This
self-determined error te corresponds to the time offset between the simulation
time and the real-time in the sink when an IP packet is forwarded to the network
interface.

Figure 11 shows the ccdf of the measured error and the self-determined error
for a packet rate of r = 200 packets/s and a packet length of L = 64Bytes.
This corresponds to a data rate of 100 kbps at the IP level. In this case, both
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Hub
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IP 
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IP 
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Fig. 10: Measurement setup
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Fig. 11: Delay error for
r = 200 packets/s and L = 64Bytes
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Fig. 12: Delay error for
r = 2000 packets/s and L = 64Bytes
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Fig. 13: Delay error for
r = 200 packets/s and L = 530Bytes
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Fig. 14: Delay error for
r = 2000 packets/s and L = 530Bytes

the mean measured error and the mean self-determined error stay below 0.1ms.
With 4.31ms and 1.88ms, the maximum measured delay error and the maximum
self-determined error are significant compared to the target delay. However, we
should note from the ccdf that such a large delay applies to very few isolated
packets only, as about 10−4 of all packets have an error larger than 0.5ms.

From Fig. 11 we also note the close match between the measured error and the
emulation self-determined error. Both error metrics mainly differ by a constant
offset due to the systematic error of additional delays in networking interfaces
and the operating system, which cannot be seen by the emulation system. This
fact is of particular interest, since it allows us to obtain a correct estimate of
the timing error at the end of each emulation run without the need of additional
external measurement equipment. By doing so, we can easily verify whether the
timing errors within a particular emulation run stayed within acceptable ranges.

Figure 12 shows the ccdf of the measured and self-determined error for a ten
times higher offered packet rate, i.e., r = 2000 packets/s. This corresponds to a
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data rate of 1Mbps. When comparing the ccdf to the case of r = 200 packets/s,
we can observe a significant decrease of the error distribution’s tail, while the
mean value remains almost unchanged. The majority of the packets still expe-
rience small errors, and the maximum error is within acceptable ranges. It is
interesting to note that the maximum packet error actually decreases compared
to the case of 200 packets/s, which is an effect of the Linux process scheduler.
When data packets arrive at a small rate, it is more likely that the operating
system switches from the emulation process to another process, and an arriving
packet finds the processor busy with some other process. Higher packet arrival
rates keep the emulation process busy for longer time periods, making process
switches less frequent, thus increasing the time accuracy of the emulation. We
should however note that a high packet rate may also result in a high system
load, leading to an excessive emulation error and eventually an instable behavior.

In order to further increase the system load, we leave the packet rate r un-
changed at 200 and 2000 packets/s, and increase the packet length from 64Bytes
to 530Bytes. This corresponds to a data rate of 848 kbps and 8.48Mbps at the
packet level, respectively. The error statistics for these cases are shown in Fig. 13
and 14. Compared to the previous case of L = 64Bytes, the ccdfs of the self-
determined delay errors are virtually the same, while the ccdf of the measured
error is slightly shifted towards larger errors. This shift results from the longer
time it takes in the egress module to transmit the additional 466Bytes of the
larger packets (approximately 0.04ms on a 100Mbps Ethernet link).

In order to further study the influence of the packet arrival rate, Fig. 15 plots
the mean self-determined error in dependence of the packet rate, and Figure 16
the corresponding maximum self-determined error. Both results were obtained by
averaging 15 independent measurements with 500.000 transmitted packets each.

The graph shows systematic variations in the timing error depending on
the packet rate. While the mean error varies only slightly, the maximum error
shows significant variations. This goes well along with our previous observations,
indicating that the packet rate does not affect the delay error of the bulk of all
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packets, but rather the tail of the delay error distribution.
It is interesting to observe that the maximum delay error drops as the packet

rate increases beyond 1000 packets/s. This correlates with the Linux kernel’s
scheduling frequency of 1000Hz and supports the observations and explanations
of Fig. 11 through 14. The increase in the maximum delay for a packet rate of
1400 packets/s is likely to be explained by other effects and superpositions with
the operating system’s process scheduler.

To conclude this section, we note that the timing error does not depend on
the link load, but rather on the packet arrival rate. A high rate of minimum
sized packets is more likely to overload the emulation than a small rate of large
packets, even if the actual traffic load on the link remains the same.

This imposes restrictions on the system we can emulate with a certain relative
timing error. While the emulation of a system with a system delay of 10ms may
impose high relative errors on the packet delay, it is obvious that when emulating
a mobile communication system with one-way delays of 50ms and more, the
mean relative timing error becomes excellent, while the maximum relative timing
error is still acceptable. We will detail this issue in the following section, where
we investigate the performance of the emulation library in combination with
a complex model of the UMTS Radio Access Network. In the simple infinite
server scenario, we can very well assume that the timing errors were introduced
by external factors, such as the operating system’s scheduler rather than by the
model itself (cmp. section 3.1). Hence, it is likely that the maximum error found
here can be reduced by the use of a real-time operating system.

6 Application Example: An integrated UMTS simulation

and emulation testbed

In [15], the IKREmuLib environment was used in combination with a detailed
UMTS radio access network model in order to evaluate the performance of web
applications in a UMTS environment. While [15] considered regular UMTS Ded-
icated Channels (DCH) for data transmission, we now extend the model to the
more complex High Speed Downlink Packet Access (HSDPA) in order to assess
the accuracy of the emulation with a realistic state-of-the-art network model.
HSDPA has been introduced within the evolution of 3GPP and provides a fast
packet-switched data channel of up to 14MBit/s. The details of the HSDPA
model are out of the scope of this paper, but can be found in [16]. Here, we will
restrict ourself to the presentation of the considered scenario.

Fig. 17 shows the block diagram of our scenario. We consider a single-cell
environment, where several User Equipments (UE) connect to the Node B via
a High Speed Downlink Shared Channel (HS-DSCH) in the downlink and a
dedicated channel (DCH) in the uplink direction. The Node B is connected to the
RNC, which itself is connected to the Internet via the 3G-SGSN and 3G-GGSN
of the cellular system’s core network. The UEs establish a data connection with
a host in the Internet. The Internet and core network were assumed to introduce
a constant delay TINet = 20ms in each direction and not lose any IP packets.
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We consider one UE where the server transmits packets of length L =
64Bytes in the downlink at a constant rate of 100, 200 or 400 packets/s. This
corresponds to data rates at the IP level of 51.2 kbps, 102.4 kbps or 204.8 kbps,
respectively. The traffic for this UE is generated by the server in the testbed and
then fed into the emulation system, that is we emulate the transmission of real
traffic over HSDPA with this mobile.

We further consider one to five additional UEs, which generate cross-traffic
on the same packet-switched HS-DSCH. For this cross-traffic, it is not so much
important that it is generated by a real traffic source. Instead, it is well sufficient
to generate the cross-traffic within the emulation model itself by the same mech-
anisms as traffic would be generated for a simulation run. We therefore call this
traffic simulated cross-traffic, in contrast to the fully emulated traffic described
above. In particular, we will consider bulk data transfer via TCP in the downlink
direction for each cross-traffic UE. This exhibit one additional advantage of the
close interrelation of simulation and emulation.

Fig. 18 plots the absolute error of the emulated traffic in combination with
one cross-traffic user for the three considered packet arrival rates. In contrast to
the simple infinite server scenario, an increased packet rate significantly increases
the absolute delay error. The reason is the much more complex processing which
has to be done for each packet within the model of the radio access network.
That means that the major contribution to the timing error results from model
imposed inaccuracies rather than operating system imposed inaccuracies.

Fig. 19 plots the same metric for five cross-traffic users. Compared to the
case of one cross-traffic user, the accuracy gets worse, leading to very large error
delay distribution tails for a packet rate of 400 packets/s. The reason are again
model imposed inaccuracies, as the emulation model is under higher load when
it has to deal with several data streams.

In order to assess the practical impact of the delay error, we have to set the
absolute delay error in relation to the absolute delay of the packet within the
emulation and study the relative delay error. Fig. 20 and Fig. 21 plot this relative
delay error for the same scenarios as before. The general characteristics of the
curves are identical to those of the absolute delay error. We can also observe
that in all considered cases the relative error for 95% of all packets is below 4%.
Depending on the load situation, the relative error for single packets grows up
to 10-15%, but it is important to note that it stays within acceptable ranges for
the majority of all packets and scenarios.

UTRAN Core Network

Node B

RNC SGSN GGSN

Internet

Server

Detailed UTRAN model Fixed Delay and Drop Probability 
TINet

Fig. 17: Architecture of the considered UMTS system
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Fig. 18: Absolute error, L = 64 Bytes,
one simulated cross traffic user
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Fig. 19: Absolute error, L = 64 Bytes,
five simulated cross traffic users
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Fig. 20: Relative error, L = 64 Bytes,
one simulated cross traffic user

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
relative delay error

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

cc
df

100 packets/s
200 packets/s
400 packets/s

Fig. 21: Relative error, L = 64 Bytes,
five simulated cross traffic users

We conclude that in a realistic scenario the model imposed inaccuracies domi-
nate the other inaccuracies introduced by the operating system and asynchronous
packet arrivals. Consequently, when setting up an emulation testbed, one has to
carefully keep in mind the complexity of the model and study the self-measured
error in order to ensure correctness. Alike, the packet generation rate of the in-
volved traffic sources is an important issue. When investigating real data traffic,
such as HTTP or FTP traffic, it comes in handy that those traffic sources usually
generate large data packets, keeping the packet rate at a relatively low value,
giving a good chance to accurate emulation results.

7 Conclusion

We presented the new emulation library IKREmuLib, which settles on top of the
well proven IKRSimLib. It allows for an easy and seamless combination of both
the simulation and emulation method. Existing simulation models can easily
be used for emulation purposes provided that they meet the model-imposed
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real-time requirements. In addition, we can add simulated cross traffic to the
actually measured real data streams. We showed by means of measurement that
the timing accuracy of the IKREmuLib for simple models is less than 0.5ms
for 99% of all packets and less than 2 − 4ms for all remaining packets in all
considered scenarios. We also demonstrated that in combination with a complex
radio access network model we can achieve relative timing errors of only a few
percent for realistic scenarios. Together with the possibility to combine simulated
and emulated components, this makes it an ideal complement to the performance
evaluation of many network applications, in particular of the evaluation of radio
access networks.
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