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Abstract— Orthogonal Frequency Division Multiple Access
(OFDMA) is the basis for several emerging wireless systems,
such as 802.16e (WiMAX) or 3GPP Long Term Evolution
(LTE). In OFDMA, different users are multiplexed in time
and frequency. In the 802.16e Adaptive Modulation and Coding
(AMC) downlink, the data bursts for a particular terminal have
a rectangular shape and need to be placed in the two-dimensional
time/frequency plane. The position and shape of the rectangles
is arbitrary, and it is the task of the frame packer to pack
the frame efficiently, wasting as little space as possible. In this
paper, we treat the frame packing problem as a strip-packing
problem. We solve this combinatorial optimization problem by
developing a suitable representation for a genetic algorithm. This
algorithm can reach within 5% of the theoretical lower bound
for the packing efficiency.

I. I NTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
a state-of-the-art spread-spectrum technique for presentand
future wireless broadband systems. In an OFDM-system, the
available spectrum is subdivided into a large number of fre-
quency subcarriers. Orthogonal Frequency Division Multiple
Access (OFDMA) is a multiplexing technique, where different
terminals are multiplexed in time and frequency based on the
underlying OFDM system. This is a promising approach for
future broadband wireless communication networks and has
become the basis for several emerging cellular systems, such
as 802.16e (WiMAX) or 3GPP Long Term Evolution (LTE).

The decision on the time and frequency ranges allocated for
a particular mobile terminal is the responsibility of the MAC
scheduler. The scheduler has two basic tasks. First, it needs to
decide on the terminals which shall be served in a particular
frame or time period, i.e., it needs to decide on the scheduling
order and also the amount of scheduled data. Second, it needs
to assign time and frequency resources to every transmission.
This is also referred to asframe packing.

Scheduling in wireless networks has been studied exten-
sively. For 802.16e systems, most work has focused on the
scheduling order of terminals and the scheduled data amount,
or on QoS architectures. In [1], Wongthavarawat et al. have
proposed and evaluated an uplink QoS scheduler for an 802.16
system. Another uplink scheduling proposal was presented in
[2] by Lee et al.

The problem of frame packing in 802.16e systems has
gained far less attention. However, finding an optimal resource
assignment is a non-trivial task. It is particularly difficult in the
Adaptive Modulation and Coding (AMC) zone, which is well
suited for advanced transmission techniques such as beam-

forming. In this zone, terminals are assigned a rectangulararea
(referred to asburst) in the time/frequency OFDMA plane.
Therefore, the scheduler needs to place a large number of
rectangles in the time/frequency plane. These rectangles may
have arbitrary measures under certain technology and traffic
specific constraints. The goal of the scheduler is to efficiently
pack the rectangles in the OFDMA-plane such that no free
spaces are left over and the overhead is minimized.

In [3], Wan et. al. present a simple heuristic solution for
the frame packing problem in combination with a schedul-
ing algorithm for the downlink AMC zone. In this paper,
we develop a near-optimal algorithm for the frame packing
problem in the AMC downlink zone by treating it as a strip-
packing optimization problem. We solve this combinatorial
optimization problem by developing an appropriate genetic
algorithm in a multi-service scenario with different traffic
classes. We will eventually show that the proposed solution
can efficiently pack all bursts in the AMC-zone and come
within only 5% of the theoretical lower bound.

This paper is structured as follows. Section II introduces the
802.16e technology and the specific zone packing problem
in detail. The strip-packing problem and possible solution
approaches are introduced in section III. Subsequently, section
IV develops the specific solution of the strip-packing problem
in 802.16e, and section V evaluates the performance of the
solution approaches. Finally, section VI concludes the paper.

II. OVERVIEW OF 802.16E

A. 802.16e frame structure

In 802.16e Time Division Duplex (TDD) systems, every
MAC-frame is subdivided into an uplink and a downlink
subframe. Both subframes are further divided into zones,
allowing for different operational modes. A sample frame
structure is shown in Fig. 1. Every frame begins with a manda-
tory PUSC-zone (Partial Use of Sub-Carriers), which contains
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Fig. 1: Example of 802.16e frame structure
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Fig. 2: Illustration of the AMC 2x3 mode

important control information. This includes the downlink
and uplink maps, which describe the location and subcarrier
occupation of transmission bursts for mobile terminals (also
referred to as subscriber stations, SS). Commonly, one or more
optional PUSC-zones follow, which contain data bursts to be
transmitted with frequency diversity.

A second important zone type besides PUSC is the AMC-
zone. In this zone, a set of contiguous subcarriers in fre-
quency and OFDM symbols in time direction are allocated
to one mobile terminal. The AMC-zone is particularly suited
for advanced transmission techniques, such as beamforming
antennas, adaptive modulation and coding, frequency-selective
scheduling, or interference coordination mechanisms (seefor
example [4]). Figure 2 shows an example of the AMC zone
layout on the left side. The figure shows the AMC 2x3 mode,
which defines subchannels of 16 adjacent data subcarriers by
3 contiguous OFDM symbols. A subchannel corresponds to
the resource assignment granularity for a particular SS. It
is therefore possible to abstract the AMC zone by the two-
dimensional resource field shown in the right part of Fig. 2,
where subchannels are allocated to the different SS.

B. AMC-zone packing

Figure 3 (left) shows a possible allocation of subchannels
to subscriber stations. Every subscriber station is allocated a
differently sized and shaped rectangular area, as it is specified
in the 802.16e standard [5]. The size depends on the amount
of data to be scheduled and the present channel conditions.
The shape mainly depends on the overall packing in that it
must be chosen such that the resulting packing minimizes the
total unoccupied space. An optimized packing is shown on the
right side of Fig. 3. The bursts are compactly packed in the
lower area of the plane while the empty space is aggregated
at the top. This allows to place yet another large burst in the
top area, which is more difficult with the fragmented empty
space of the unoptimized packing.

Note that different shapes can host a different data amount.
This becomes evident for SS 4 in Fig. 3, whose burst occupies

9 subchannels in the left frame and 8 subchannels in the right
frame. Both is sufficient to carry a data amount that fits for
example in 7 or 8 subchannels. This implieswasted capacity
for certain shapes under a particular traffic demand.

802.16e allows to use adaptive modulation and coding
(AMC) techniques. This means that the modulation scheme
and code rate, which both together form theburst profile, may
be chosen dynamically and individually for each SS depending
on the present condition of the time-variant wireless channel.
An SS in good channel conditions can be served with a higher
order modulation scheme and a high code rate, e.g., with
64QAM 3/4. Consequently, with AMC, the size of a burst
containing the same amount of data will vary depending on
the channel state.

If frequency-selective packet scheduling (FSPS, see for
example [6]) is used, the modulation and coding scheme and
thus the burst size will even vary depending on the position
in the time/frequency plane. This is due to the variation of
the channel in the frequency direction in a multipath fading
environment. FSPS requires detailed channel state information
at the base station, which needs to be acquired via feedback
or measurement signals from the SS (for example via channel
sounding [5]). Moreover, the present base station generation
does not support FSPS. Therefore, we will disregard this
feature in the remainder of the paper. Instead, we assume AMC
based on RSSI (Receive Signal Strength Indicator) and CINR
(Carrier to Interference and Noise Ratio) information, which
is a standard approach in 802.16e and leads to a constant burst
size regardless of its position in the time/frequency plane.

C. Scheduling and service classes

802.16e allows to specify individual QoS parameters for
different traffic flows. This allows to prioritize a real-time VoIP
connection over a real-time streaming video, which in turn can
be prioritized over a best-effort FTP download. An interactive
web-session may be somewhere in-between. The scenario for
the remainder of this paper will assume a number of real-
time and interactive connections, which need to be served
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Fig. 3: Example of downlink AMC-zone packing



before other best-effort connections. The amount of data to
be scheduled in one particular frame is determined in advance
for the real-time and interactive connections such that the
aggregated real-time and interactive traffic never exceedsthe
capacity of one frame. For example, it is known upfront how
much data VoIP or streaming video requires in one particular
frame. Once all real-time and interactive flows have been
scheduled, the remaining space in the frame will be filled up
with best-effort connections, which usually consist of elastic
traffic, such as FTP downloads that can efficiently fill up empty
space.

This scenario implies the following frame-packing problem.
All bursts of real-time and interactive flows need to be packed
as compact as possible (such as in Fig. 3, right side) in order
to leave an as large as possible contiguous and rectangular
empty space. This empty space can then easily be filled
up with other rectangular bursts of the remaining best-effort
flows. This problem is a variation of the well-known strip-
packing problem. In the following section, we will give an
overview of strip-packing and possible solution approaches to
this optimization problem before presenting a specific solution
for the AMC zone frame packing problem in section IV.

III. STRIP-PACKING AND EVOLUTIONARY ALGORITHMS

A. Classification of packing problems

In a 2-dimensional orthogonal packing problem a finite set
of given rectangularly-shapeditems, each characterized by
heighthi and widthwi, has to be optimally placed in one or
more bins such that the wasted unoccupied space in the bins
is minimized. The items must not overlap and must not cross
the bin boundaries. Items may be free-floating. Two basic vari-
ants are known: the2-dimensional strip-packing problemand
the 2-dimensional bin-packing problem. In the strip-packing
problem only one bin with widthW and infinite heightH
(i.e., sufficient height) has to be packed. The objective is to
minimize the required height. In the bin-packing problem an
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infinite number (i.e., sufficient number) of bins of fixed size
W ·H are available. The objective is to minimize the number of
required bins. Strip- and bin-packing problems are also known
in literature ascutting-stock problemsor knapsack problems
[7]. Dyckhoff [8] describes problems related tocutting and
packingand lists more than 150 annotated references.

If the set of items is known in advance the problem is
classified as anoffline problem. Otherwiseonline algorithms
are necessary that individually place the items without knowl-
edge of number and/or shape of future items. Another major
classification criteria is thelevel-basedplacement of items,
i.e., whether items horizontally next to each other have to be
placed on the same level of height or not.

Our problem is a variant of the original offline, non-level-
based, 2-dimensional strip-packing problem, as we allocate
rectangular areas of subchannels within one sufficiently large
AMC-zone. Lodi et. al. [9] formulated an Integer Linear
Program (ILP) that finds the optimal solution for a similar
problem. This approach works only for small level-based
problem instances, though. Several heuristics exist that find
medium to good solutions (see for example [10]–[13]). We
cannot apply these heuristics to our problem directly. All of
the approaches assume fixed sizes and shapes of the items,
some of them allow rotating or flipping the items at most.
In our scenario the rectangular areas of subchannels are not
predetermined in shape, as long as they cover a minimum area;
i.e., we allow wasted capacitywithin the items.

Due to these properties we modified the existing approaches.
We develop a genetic algorithm that takes the variable shapes
of the items into account and combine it with a simple
and fast heuristic (Next-Fit-Decreasing-Height, NFDH [9]) to
obtain near optimal results. Such an approach has already
been successfully employed on other variants of the strip-
packing problem [14], [15], though with the above mentioned
restrictions.

B. Evolutionary and genetic algorithms

It is possible to applyevolutionary algorithmsto almost
any optimization problem, in our case to find the optimal
shapes and ordering of items. Roughly speaking, evolution-
ary algorithms perform a systematic random search of the
optimum among all perceivable solutions. If the solutions are
represented by an array of bits, numbers, or characters, we also
speak ofgenetic algorithmswith the solutions asgenomes. The
principle of evolutionary and genetic algorithms is illustrated
in Fig. 4. Starting with a finitepopulation of genomes, the
population is evolved with eachgeneration into a new and
better population. This process is inspired by the biological
evolution. Each new generation’s population has partly, first,
surviving genomes of the old population, second,mutated
genomes, and third, the (in our case mutated)crossoverof
two genomes of the old population. Afitnessfunction selects
only the best of these genomes into the new generation. By
favoring good genomes and/or slightly modifying them while
keeping relevant structural properties a genetic algorithm is
superior to pure random search. Refer to [16] or [17] for



further information.
There are many variants of this basic algorithmic frame-

work. For example, different mutation and crossover opera-
tions exist, that vary in complexity. Partial or whole popu-
lations can be replaced in each generation, even their size
can change. We chose a steady-state genetic algorithm, where
only a maximum fractionRR of a population’s genomes are
replaced in the next generation. The size of the population
remains always constant. The representation of our problem
with genomes and the respective mutation and crossover
operations are introduced in section IV.

IV. A PPLICATION OFSTRIP PACKING TO 802.16E

As explained in section II, a set of burstsC is selected for
packing the AMC-zone. Each bursti ∈ C is characterized
by its data volumeci by means of the number of required
subchannels. The AMC-zone is rectangular withW columns
andH rows, i.e.,W · H subchannels.

For each bursti, a single rectangular area within the AMC-
zone must be allocated. That means, a lower left corner
(xi, yi) as well as an appropriate widthwi and heighthi

must be selected such that the number of assigned subchannels
is at least as large as the number of required subchannels
(wi · hi ≥ ci) and the selected area is entirely within the AMC-
zone (xi + wi ≤ W and yi + hi ≤ H). Furthermore, the
selection of rectangles should leave the remaining unused
subchannels organized in a rectangle of maximum size.

To solve this optimization problem, we apply a genetic
algorithm. For this, we developed a representation of each
relevant arrangement by a genome and defined mutators and
crossovers operating on our genomes as well as a mapping of
the solution’s quality to the fitness of a genome.

A. Genome Modeling and Fitness

We model a genome as a list ofall bursts that are selected to
be placed within the current frame’s AMC zone. Genomes can
differ by the order of bursts as well as the shape of each burst.
Accordingly, mutators and crossovers should reorder the list
and/or change width and height of any number of data blocks.

To place the bursts in the AMC-zone we apply the Next-
Fit-Decreasing-Height (NFDH) placement algorithm [9]. This
algorithm iterates through the list of bursts and places each
according to the following rules: The first burst is placed in
the lower left corner. Any other burst is placed either to the
right of the previously placed in the same row, if sufficient
space is available and its height is less or equal to the height
of the previously placed burst. Otherwise it is placed in the
first column of the next free row.

Finally, we measure the fitness of a genome by the AMC-
zone filling height since NFDH compacts the data blocks in
the lower part of the AMC-zone.

Obviously, NFDH is not optimal by itself as some sets of
bursts can never be placed with minimal resource occupancy
independent of the list order. Nevertheless, we will show in
section V that we can achieve near optimal results.

B. Mutation and Crossover

As already stated in our approach a genome consists of a
list of bursts with assigned shape. For changing the order of
the list as well as shapes we define three mutators and one
crossover operator.

Theswap mutatorchanges only the order of the list but not
the shapes. For one swapping two bursts are picked randomly
and their position in the list is exchanged. The amount of swap-
pings inside one genome depends on the mutation rateRM .

Thechange shape mutatorchanges only the shape of bursts
but not their order within the list. As feasible shape we define
one consisting of a widthwi ≤ W and a heighthi ≤ H, which
has at leastci subchannels but no more thanξ wasted capacity
units, i.e.,ci ≤ wihi ≤ ci+ξ. Among all feasible shapes a pre-
selection is taken to discard shapes with extreme dimensions.
From the remaining ones, one shape is selected randomly and
assigned to the burst. The number of changed shapes depends
analogous to the swap mutator on the mutation rateRM .

Theswap and change shape mutatorexchanges the position
of bursts in the list and simultaneously alters their shape.
Again, the number of changes depends onRM .

Finally the so-calledpartial match crossover[18] is chosen
as crossover operator, which produces two new genomes out
of two existing ones. After selecting a matching region with
random position and length in the list, the sequence of the
bursts inside the matching region is mutually exchanged. As
each burst has to appear exactly ones in a genome, additional
exchanges outside the matching region might be necessary.
The probability of altering existing genomes by this crossover
operator is given byRC (see also Fig. 4).

C. Evaluation Metric

For evaluation of our genetic algorithm approach, we have
chosen to use the ratioδ = Fbest/Flb. TherebyFbest is the
fitness of the so far best solution found by the algorithm.Flb

is a theoretical lower bound fitness and gives the minimum
number of rows necessary for all bursts without the constraint
of having rectangular shapes. WithFlb = ⌈

∑
i∈C ci/W ⌉ we

can easily calculate this value.

V. PERFORMANCEEVALUATION

A. Scenario

We consider four different service classes as shown in
table I. In every traffic class, the given number of bursts
needs to be scheduled in every MAC frame (precisely: in the
considered AMC zone of the respective MAC frame). Every
burst occupies a random number of subchannels in the range
indicated in table I. The number of required subchannels per
burst varies within one traffic class even though the data rate
does not change due to adaptive modulation and coding. Note
that the table lists the number of flows that are scheduled
per frame, not the total number of flows in the system. Since
a video stream is scheduled more frequently than an audio
stream, it achieves a much higher data rate than the audio
stream even though it requires only twice as many subchannels
per frame.
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As described in section II-C, the goal of the frame packing
procedure is to pack the high priority service classes VoIP,
streaming video, and streaming audio as efficiently as possible
to leave enough contiguous space which can then be filled up
by the elastic background FTP traffic.

As a stop criterion for the genetic algorithm, we choose a
fixed number of generationsNgen. This is motivated by the
fact that frame packing is a real-time problem. Consequently,
a constant amount of time, and hence a constant number of
generations, needs to be foreseen for it in the basestation.

B. Simulation and Optimization Environment

In order to evaluate the performance of the frame packing
procedure, we perform Monte-Carlo simulations. In every
Monte-Carlo drop, one frame is being packed by the genetic
algorithm. For each of these frames, the number of subchan-
nels required by a data burst is uniformly drawn from the
range indicated in table I. For all results listed in the following
section, a total number of 1000 frames was packed, which is
sufficient to deliver excellent confidence intervals.

C. Comparison of Mutation Operators

Figures 5 through 7 show the performance of the different
mutators depending on the mutation rateRM and the crossover
rate RC . Plotted is the ratioδ = Fbest/Flb after Ngen =

1000 generations with a population size of|P | = 100 and a
maximum wasted capacity ofξ = 2.

Both the Change Shape and the Swap Mutator utilize only
one dimension in the possible mutation space, either changing
the shape or swapping elements. The missing dimension is
brought in only by the crossover operation. Consequently,
the GA achieves a better performance with both mutators at
higher crossover ratesRC . In contrast, the Swap and Change

Data rate Number of sub- Number of
Traffic class [kbps] channels per burst bursts per frame

VoIP 14.4 1—6 10
streaming video 300 6—32 5
streaming audio 44 3—18 5

FTP elastic elastic variable

TABLE I: Traffic classes

Shape Mutator explores both dimensions in the mutation
space. A higher crossover rate increases the performance only
for low mutation ratesRM , since a larger solution space
can be traversed. For larger mutation rates a larger crossover
rate harms the performance since newly created generations
have much less in common with the original generations,
which at some degree starts to contradict one basic principle
of genetic algorithms. Compared to the other operators, the
Swap and Change Shape Mutator achieves the best perfor-
mance which is only about 6% away from the theoretical
optimum.

D. Convergence and population size

One important criterion for the performance of the genetic
algorithm is the time it takes to find a sufficiently good
solution. Figure 8 plots the fitnessδ = Fbest/Flb depending
on the number of generations for the best configuration of the
three mutators. With all mutators, the quality of the solution
quickly decreases with an increasing number of generations,
and good solutions can be obtained with onlyNgen = 100

generations. While the Change Shape mutator and the Swap
mutator converge quicker in the beginning, the Swap and
Change Shape Mutator outperforms them for larger number
of generations.

The same metric is plotted in Fig. 9 for the Swap and
Change Shape mutator and different population sizes|P |. Nat-
urally, the quality of the solution improves as the population
size is increased. Alike, the algorithm converges faster since
a larger solution space can be searched with the same number
of generations. Note that for large|P | and Ngen the lower
performance bound can be reached by only 5%.

Larger|P | andNgen imply an increase in the computational
complexity. In particular, the complexity is proportionalto
Ngen · |P |. It is therefore of great interest to find the minimum
Ngen and |P | which deliver the best performance. Figure 10
plots the fitnessδ of the best solution depending on|P | and
Ngen. The chart reveals that it is inefficient to increase either
Ngen or |P | while leaving the other parameter unchanged.
Instead, the best ratio of solution quality and computational
complexity can be achieved forNgen ≈ |P |.
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E. Complexity

Genetic algorithms are known for their relatively long
computation times. In contrast to that, frame packing is a real-
time problem. As we have seen in the previous section, the
algorithm achieves a good performance already with 50–100
generations. Moreover, genetic algorithms have an inherent
parallelism, since all mutations, crossover operations, and
fitness calculations can be done in parallel. This makes them
well suitable for a massively parallel hardware implemen-
tation on an FPGA or an ASIC. Several efficient hardware
implementations of genetic algorithms have been reported in
literature, mostly aiming at generic hardware accelerators. For
our problem, we are currently developing a tailored hardware
FPGA solution. We expect that a sufficient performance with
respect to the quality of the packing and the computation time
is possible on regular FPGA or ASIC hardware.

VI. CONCLUSION

Frame packing is crucial in OFDMA systems, such as
802.16e or 3GPP LTE since it has a big impact on the system
performance. It is a complex problem, since a large number
of data bursts needs to be placed in a two-dimensional zone
as efficiently as possible. In this paper, we treated the frame
packing problem in an 802.16e system as a strip-packing
problem and applied genetic algorithms to solve this combi-
natorial optimization problem. The genetic algorithm reorders
the scheduled bursts in such a way that a simple placement
heuristic, such as NFDH in our case, can place the bursts as
efficiently as possible. We showed that we can come within
5% of the theoretical lower bound, thus maximizing the system
capacity. Our work constitutes an important step towards
next-generation wireless broadband networks with maximized
spectral efficiency. As frequency-selective scheduling becomes
more important, future work will additionally have to consider
the frequency selectivity of the wireless channel.
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