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Abstract—Packet assembly at the network edge is one solution
to reduce the high packet rates in core network switches. For
this, specialized edge nodes called Assembly Units are needed
that assemble client packets into containers and vice versa.

In this paper we present the detailed architecture and im-
plementation of a generic Frame Assembly Unit for the Frame
Switching architecture along with the testbed used for validation.
Our design supports timer and threshold based assembly includ-
ing packet fragmentation for fixed and variable size container
frames at 10 Gbps per direction. For assembly and packet
delineation we use the ITU-T Generic Framing Procedure. We
report performance and implementation results for an overall
design that operates with a 128 Bit data-path at 100 MHz on
Xilinx Virtex4 FPGAs.

I. INTRODUCTION

Growth of data rates in packet core networks increases

packet rates and thus the switching effort within core switches.

This directly increases the complexity of these core switches.

An approach to reduce the packet rates is to increase the size

of the individual packets. A prominent solution for this is the

assembly of smaller client layer packets into larger server layer

containers at the network edge. The Frame Switching (FS)

architecture [1] relies on this idea and shifts complexity and

processing effort from the network core to the network edge,

where rates are lower than in the core.

Fig. 1 shows a FS network. It consists of edge nodes called

Frame Assembly Units (FAU) and core nodes called Frame

Switches (FSW). At ingress, the FAU assembles client packets

into containers and forwards them to the next FSW. The

FSWs switch these containers along a preestablished path with

support for relative quality of service (QoS) to the destination

node. There, the egress FAU disassembles the container to

individual packets and forwards them towards the destination

client. As the containers are layer 2 frames, we use in the

following the term frame for containers.

Frame Switching was originally proposed as an extension of
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Fig. 1. Frame Switching network architecture

the Optical Transport Network (OTN). However the concept

of packet assembly at the network edge is also applicable

to Ethernet. Frames of both network architectures differ with

respect to their size restrictions. While OTN uses fixed-size

G.709 frames Ethernet frame sizes are variable between a well

defined upper and lower bound. Due to the size limitation in

Ethernet client packets face fragmentation to achieve maximal

throughput. Using fixed size OTN frames client packet frag-

mentation is mandatory to fill the frames efficiently. Further,

fixed size frames must be padded in low load situations.

In literature, several architectures and implementations of

assembly nodes as well as testbeds have been presented for

Optical Burst Switching (OBS) networks [2]–[6]. They all

support only variable length burst assembly and thus do not

consider packet fragmentation impact as well as padding. The

works in [2], [3] mainly focus on some key unit technologies,

such as optical switches. In [4], [5] the authors describe the

node architecture in more detail but give no information about

how assembly and disassembly work. The authors in [6] use a

standard network processor to implement an assembly node

and describe in detail the assembly process. Nevertheless,

scalability and throughput are limited due to the software

implementation.

For Frame Switching networks to the best of our knowledge

only [7] describes an assembly node architecture. The authors

present the nodes’ ingress direction able to assemble packets

into fixed sized frames. Assembly is done timer and threshold

based at a line rate of 10 Gbps. The authors use Generic

Framing Procedure (GFP) for user packet encapsulation and

G.709 as frame format. Nevertheless, the work lacks the egress

direction with disassembly part and neglects fragmentation.

In this paper we present the architecture of a generic

bidirectional FAU including its implementation (prototype)

and a complete testbed for validation. Our FAU architecture

is highly modular and eases adaptation to any packet oriented

technology. We describe its ingress and egress direction and

argue our design decisions. Our FAU prototype supports fixed

and variable frame sizes including fragmentation and padding.

It assembles based on a combined timer and threshold based

assembly strategy at a throughput of 10 Gbps per direction.

We describe how we solved assembly and disassembly by

the use of ITU-T Generic Framing Procedure. Our testbed

enables further performance studies and research on how real

applications are affected by packet assembly.



This paper is organized as follows: section II describes a

generic assembly node’s functional architecture. Section III

shows the testbed’s network scenario which was used to

validate the FAU. Section IV argues the architectural design

decisions made and describes the FAU’s prototype architecture

in detail. Finally, section V presents implementation details

and performance results.

II. FUNCTIONAL ARCHITECTURE OF A GENERIC

ASSEMBLY UNIT

The key element in a frame switched network is the Frame

Assembly Unit (FAU). It assembles packets to frames in

ingress direction, i. e. from access to core, and disassembles

frames to packets in egress direction, i. e. from core to ac-

cess. This chapter introduces the functional architecture for a

generic FAU.

Fig. 2(a) depicts the functional architecture for ingress

direction. From left to right, incoming packets are classified

and assigned to a Forwarding Equivalent Class (FEC).

The assembly stage assembles packets of the same FEC

to frames. Therefore the FIFO in the corresponding assembly

unit collects arriving packet data. The control block monitors

the FIFO fill level and triggers a frame generation when the

size threshold is reached. A timer is started upon packet

arrival into an empty FIFO to avoid starvation. Upon timeout

a frame is generated. In case of fixed size frames the assembly

stage fragments packets to completely fill the frames. It

appends padding if the amount of collected packet data is

below the minimum frame size. Before concatenation to one

continuous data block meta information is added to enable

packet delineation in egress direction.

Frames which are ready to be sent are buffered in case of

congestion and scheduled according to their Class of Service

(CoS). The MAC encapsulation stage finalizes the frame for

transmission by adding headers and trailers.

Fig. 2(b) shows the functional architecture of the egress

direction of a generic FAU. From right to left, incoming frames

are classified and assigned to an FEC. The MAC decapsulation

stage removes the frame overhead.

The disassembly stage delineates packets with help of the

meta information added during assembly. It also drops the

meta information as well as padding. In case of fixed size

frames the last data in a frame may be a packet fragment. The

FIFO queue stores packets and packet fragments. The control

block monitors the FIFO and if it contains an entire packet

it triggers its forwarding. Similar to ingress direction a buffer

stage and a scheduling stage take care of packet transmission

according to their CoS.

For mapping a client packet data stream into a server

constant bit rate (CBR) stream the ITU-T has standardized the

generic framing procedure (GFP) [8], [9]. GFP encapsulates

each packet by adding meta information (the GFP core and

payload headers) that allows delineation at the destination.

Furthermore, if no packet data is available GFP idle frames

are inserted for padding. Finally it supports fragmentation of

packets and distribution into multiple server frames. However
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Fig. 2. Functional archtitecture of a FAU

the server layer is not CBR in our case, we use GFP for

padding and delineation.

III. TESTBED NETWORK SCENARIO

We set up a testbed for the complete Frame Switching archi-

tecture to validate the function and realizability of the network

architecture as well as of the generic FAU architecture. This

testbed comprises both data and control plane. In this paper,

we focus on the data plane part only, which is depicted in

Fig. 3.

In our testbed we use 10 Gigabit Ethernet equipment for

both, access as well as core network. Quasi-standard Ethernet

jumbo frames of 9 Kbyte builds our container frame within the

core. We interconnect three access networks transparently by

transporting the entire Ethernet layer through the FS network.

The testbed consists of three FAUs, one core switch and

three access switches. The access switches A, B and C

aggregate client traffic to one 10 Gigabit Ethernet link and map

client packets to one Virtual LAN (VLAN, [10]) per FEC. The

latter simplifies classification within the FAU and decouples

FECs from the attached clients’ MAC addresses. Upon change

of a client the classification criteria need not to be updated.

The FAU assembles packets belonging to one FEC into

frames and forwards them into the core network. As FS is

connection oriented while Ethernet is connection less we have

to emulate a connection in the core. For this, we configure

for each bidirectional connection one VLAN. This VLAN

contains only those two ports of the connections data path.

This enables also QoS differentiation in the core switch by

using the VLAN-priority field in the VLAN header.

The remaining part of the paper focuses on the architecture

and realization of the FAU prototype.

IV. FRAME ASSEMBLY UNIT

This section describes the architecture of the FAU prototype.

We first argue major design decisions that realize the require-

ments on functionality and throughput. Then we present the

architecture in detail.
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A. Design decisions

First we have to decide between a hardwired implementation

versus an implementation based on programmable processors

for the function blocks. A hardwired implementation is always

faster because it is specialized and usually works in a highly

parallel manner. In contrast, programmable processors are

more flexible. The FAU processes header and payload of all

packets. This is due to GFP’s requirement for scrambling

and descrambling entire packets during encapsulation and

during decapsulation respectively. Furthermore a byte by byte

inspection of incoming frames is necessary during packet

delineation. To handle the required data rate of 10 Gbps we

use hardwired implementations for all function blocks.

Second is the organization of function blocks as a pipeline

or as a parallel structure, or even a combination. A pipeline

with hardwired stages enables decomposition of functions into

small steps to increase frequency and throughput as well as

modularity. As the FAU processes all data equally and in a

fixed sequence per direction, we chose a pipeline structure for

our architecture.

To increase throughput we could use several parallel pro-

cessing units per pipeline stage or even use several parallel

pipelines. In several processing units (e. g. GFP), the state

before processing a packet or a frame depends on the final

state of the previous one of the same FEC. This means that

data belonging to the same FEC cannot be processed by two

parallel units at same time. As we assume that every FEC may

use the full line rate, even if only temporary, every processing

unit has to support line rate. Therefore it is not reasonable to

parallelize processing units.

To realize data processing with per FEC state two options

arise. First is to include one processing unit instance per FEC

into the stage – that obviously does not scale. Second is to

use only one unit per stage and extend it by the ability to

change the state according to the processed FEC with help of a

state memory. For this prototype, we apply both concepts. For

complex stages we use the second possibility to save resources.

But for simplicity reasons we use parallel units to implement

assembly and disassembly stage as only a small number of

FECs is required. This also enables dedicated buffers in these

stages which in turn simplifies the implementation.

Third is the buffering concept in assembly and disassembly

stages. In ingress direction, buffers can either store individual

packets which are concatenated into frames afterwards or the

packets are concatenated first and buffers store these larger

frames. First option allows a fine-grained modularization be-

cause packet concatenation to a frame as well as the logical

assembly are separated. The second alternative leads to a

more efficient use of memory bandwidth at the expense of

additional complexity. The egress direction is identical to its

ingress counterpart except for granularity: buffers can either

store packet fragments which are concatenated into packets

afterwards or packet fragments are concatenated first and

buffers store packets.

For real data traffic the increased memory bandwidth is

negligible. But as the separation of functionalities reduces

implementation complexity, we chose for both directions data

buffers that store packets and packet fragments, respectively.

Finally, nowadays line rates of e. g. 10 Gbps are more

then an order of magnitude higher than achievable processing

frequencies on an FPGA or ASIC. Therefore, processing has

to be done highly parallel and on-chip data buses have to be

wide to provide the required throughput.

But as packet lengths have byte granularity, a wide bus

also has two main drawbacks. First is the alignment problem.

If packet lengths are changed, packets are concatenated or

frames delineated, data must be realigned within the bus. For

these operations, an increase in bus width leads at least to a

linear increase of hardware effort. Second, the bus efficiency

decreases for wider buses. As each bus word always belongs to

only one packet, its last word is usually filled only partially.

In the worst case concerning data throughput the last word

contains only one valid data byte. This is also called the

65 byte problem. Potential bus throughput has to be over-

dimensioned accordingly to cope with this problem.
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B. Prototype architecture

Fig. 4 and Fig. 5 depict the implemented architecture of

the FAU in ingress and egress direction respectively. Both

Figures show on top available configurable parameters during

operation, in the middle pipeline stages and at the bottom the

processing state of the packets/frames. Furthermore, a FIFO

symbol marks stages with FIFO buffer and their sizes. We

describe both directions along the data processing path.

First two stages receive incoming packets, buffer them

temporarily and convert them to the internal data format (IDF).

Therefore they adapt the data width to the internal bus width

and add an internal header.

The VLAN classifier stage assigns each packet to an FEC

and stores this information inside the internal header. Then

packets are GFP encoded. Therefore, the GFP encoder adds

GFP core and payload headers and scrambles the data. We

positioned the GFP encoder before the assembly unit as with

this the packets have already their final length during assembly.

This simplifies size calculation inside the assembly unit.

Afterwards, the GFP encoded packets are demultiplexed to

the according assembly unit while packets not assigned to an

FEC are dropped here. Each FEC has its assembly unit with

a dedicated buffer that is also responsible for the timeout and

size control. On timeout or on reaching a defined size threshold

the assembly unit signals to the scheduler that a frame is

ready to be sent. On request of the scheduler it transmits GFP

encoded packets or fragments of a packet to the concatenator

stage to build a fixed or variable length frame. In case of

fixed size frames, it additionally generates GFP idle frames as

padding if necessary and transmits them to the concatenator.

If more than one assembly unit signals ready to send, the

scheduler assigns the outgoing link in Round Robin manner

to the assembly units.

The concatenator stage removes IDF headers, aligns data

and creates a continuous data block which will build

the frame’s payload. This data block is forwarded to the

Eth/VLAN header generator stage which prepends an Ethernet

and a VLAN header according to the frame’s FEC to build a

valid Ethernet jumbo frame.

Finally, last two stages remove the IDF header, buffer the

frame and transmit it with line rate. Here again data width is

adapted to the data width used by the outgoing interface.

In egress direction the first two stages receive incoming

jumbo frames, buffer them temporarily and convert them into

IDF similar to ingress direction.

The VLAN classifier stage then assigns each frame to an

FEC and stores this inside the internal header. The Eth/VLAN

header remover stage cuts all Ethernet and VLAN headers.

The remaining data block is forwarded to the GFP decoder

stage. This stage delineates GFP encoded packets, removes

GFP headers and drops GFP idle frames. It forwards resulting

packets and packet fragments to the disassembly stage.

After GFP decoding, packets and packet fragments are

buffered in the disassembly stage where each FEC has its



disassembly unit with dedicated buffer. As in ingress direction,

packets not assigned to an FEC are dropped here. As soon

as a disassembly unit contains an entire packet it signals the

scheduler that a packet is ready to be sent. On request of

the scheduler it transmits all fragments of one packet to the

concatenator stage.

The concatenator stage removes IDF headers, aligns packet

fragments and creates a complete packet. This packet is

forwarded to the last stages where, like in the ingress direction,

the IDF header is removed, the packet is buffered and then

transmitted with line rate.

V. REALIZATION

A. Evaluation Board

We use an AdvancedTCA (Advanced Telecom Computing

Architecture) compliant printed circuit board for evaluation

(Fig. 6). Two Xilinx Virtex-4 FX100 90nm FPGAs (package

FF1517) build its core.

One FPGA implements a GMII (Gigabit Media Independent

Interface) connected to a MARVEL 88E1111 tri-mode Ether-

net transceiver device. Each FPGA is connected to a fully

protocol agnostic transceiver device (Vitesse VSC8479) via

two source synchronous, unidirectional LVDS interfaces effec-

tively implementing a XSBI (10 Gigabit Sixteen Bit Interface)

to access XFP (10 Gigabit Small Form Factor Pluggable) optic

modules. XSBI signal traces are length matched to prevent

signal alignment issues at FPGA I/Os and to avoid tedious

signal delay adjustment tasks within the FPGAs. Vitesse

transceivers’ operating speed is 644.53125 MHz resulting in

the required 10GBASE-R line rate of 10.3125 Gbps. They are

connected over short (2.5 cm) traces to their attached XFP

modules for signal integrity reasons.

To interconnect the FPGAs, three types of interfaces are

implemented: First type is a clock and control interface with

low pin count. Second type is a parallel interface that consists

of 32 data and 2 clock signals. This is three times available.

The third interface is a high speed serial interface that utilizes

one MGT (Multi Gigabit Transceiver) to implement a channel

for data rates in the range of 10 Gbps. Four of them are

available.

B. Implementation

We designed the FAU prototype architecture using VHDL

and Xilinx ISE 10.1.02 for synthesis and place&route. The

internal bus as well as all processing units have a width

of 128 Bit. The whole design except the external interfaces

operates at 100 MHz. The gross throughput of the FAU is

12.8 Gbps per direction. All stages in the architecture are

clocked and can store one or more bus-words in registers.

As 10 Gigabit Ethernet MAC we use an Intellectual Property

core from Xilinx in Version 8.5 while all other functionality

was implemented by ourselves.

As both FPGAs on the evaluation board are connected

exclusively to one 10 Gigabit Ethernet interface the imple-

mentation has to be mapped to both FPGAs. Fig. 7 depicts

this mapping. The ingress direction is on FGPA0 and the

egress direction on FPGA1. With this mapping, the 10 Gigabit

Ethernet interfaces can not be distinguished into core and

access interfaces. Instead, both are half access and half core

interfaces. Due to this, optical fibers connecting core and

access Ethernet switches have to be split up in RX and TX

direction such that they can be correctly connect to the board,

as depicted in Fig. 7.

FPGA1 additionally contains the FPGA Management Sys-

tem (FMS) which serves as control plane interface. Via FMS

which uses the 1 Gigabit Ethernet interface parameters can be

configured for both ingress and egress direction. Therefore,

FMS uses two parallel inter-FPGA links. The FAU’s current

configuration as well as a lot of statistics can be set and

monitored during operation utilizing a control PC.

For modularity and flexibility reasons all stages in the

pipelined architecture have uniform bus interfaces.

All but the classifier stage change the length of transported

data. This makes processing time nondeterministic and neces-

sitates a flow control. To handle data flow control between

stages we use a bus protocol which differentiates between

two kinds of stages: stages with FIFO buffers and stages

without. Between two stages with FIFO buffer we can transfer

a data block without interruption. Therefore the sender asks the

receiver if a transaction is ongoing and for the amount of free

memory. The sender can start to send data when no transaction

is ongoing and there is enough free memory. A transaction

ends as soon as the data block is received completely. Stages

without FIFO buffer cannot interrupt a transaction and must

receive one data word per clock cycle during a transaction.

An additional register in these stages avoids overflow in case

of word wrap around.

Inside the GFP encoder and decoder stages, we implemented

Frame mapped GFP (GFP-F) [8] standard compliant. To

process data from different FECs, both have a state memory

to store the processing state and support a fast state switch. In

contrast to [11] we also realized payload processing and this

also for several FECs.

We implemented all FIFO buffers in the architecture with

on-chip dual port memory. We dimensioned them twice as

large as the largest packet/frame for simplicity reasons to

enable blocking free operation. Assembly and disassembly

units are exceptions. They were dimensioned for zero packet

loss during assembly and disassembly as follows:

With respect to buffer occupancy the worst case scenario for

an assembly unit is, when all assembly units contain enough

data to send a frame and all the following data is destined to

the assembly unit that processes the FEC with lowest priority.

To avoid packet loss, this assembly unit needs the number

of FECs times the maximal frame size of memory. This is

here ⌈7 · 9Kbyte⌉ = 64Kbyte. The number of supported FECs

in ingress direction is limited by the total available on-chip

memory. For disassembly same calculation can be made when

using the maximal packet size instead the frame size. As we

do not limit the user packets size to 1518 byte we use the

same dimensioning in both directions.
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C. Numerical Results

The implementation of the ingress direction uses 35% flip

flops and 52% look up tables available in FPGA0. The egress

direction including FMS uses 29% flip flops and 42% look

up tables available in FPGA1. These numbers also include

approx. 50 statistic counters per FPGA with 32 to 64 Bit width.

The maximum achieved Frequency is 105 MHz.

The design was validated successfully using an on-chip

pseudo-random data generator as well as within the described

testbed scenario. For the first, ingress and egress direction were

put back to back on one FPGA including two pseudo-random

data generators, one generating, one verifying packets.

Fig. 8 shows the net throughput of the FAU as a function

of packet size compared to the maximal net throughput of

10 Gigabit Ethernet. For the minimal packet size of 60 byte

(minimal Ethernet frame without CRC) the FAU reaches a

throughput of 5 Gbps. This is due to the unused clock cycles

between two transactions. For large packet sizes the FAU

throughput converges to the gross throughput of 12.8 Gbps.

The FAU throughput curve has a saw tooth shape due to

the internal bus width. The fill ratio of a packets last word

depends on its length, what impacts internal bus efficiency.

With increasing packet lengths the relative weight of one word

decreases, which leads to smaller saw teeth. An increase in bus

width would lead to overall larger saw teeth.

VI. CONCLUSION

In this paper, we presented the architecture and implementa-

tion of the ingress and egress direction of a fully operational

Frame Assembly Unit. We propose a pipelined architecture

with uniform stage interfaces maximizing throughput. The

architecture is modular to ease design adaptation to any packet

oriented transport technology. We described the design in

VHDL with a 128 Bit wide data-path to handle 10 Gbps

throughput per direction.

Our architecture supports packet fragmentation for a 100%

container frame fill ratio and Generic Framing Procedure

for packet delineation. The prototype is able to handle 7

connections per direction.

We validated the design within a testbed using Ethernet

packets as client traffic and Ethernet jumbo frames as con-

tainers. The presented design proves that a complete assembly

node is viable on a standard FPGA device. Our testbed

enables further performance studies and research on how real

applications are affected by packet assembly.
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