
Frame Assembly in Packet Core Networks
– Overview and Experimental Results

Wolfram Lautenschläger, Alcatel-Lucent Bell Labs, Stuttgart
Arthur Mutter, Sebastian Gunreben, University of Stuttgart, IKR

Abstract
Literature has proposed Frame Assembly and its variants multiple times to cope with the ever increasing switching
density in consequence of increasing link rates. Nevertheless, state-of-the-art networks do not implement and apply it.
Skepticism of practitioners and investors regard not only the effective gain of frame switching, but also questions of
control, interfacing and performance impact on the existing Ethernet/IP infrastructure.
We present an operational prototype network with frame assembly in its core that seamlessly interfaces to existing
Ethernet technology and seamlessly integrates to a standard conform GMPLS control plane. We show the manageable
additional effort of assembly at the network edge, the direction how to integrate such network into existing control
structures, but also the limited and well controlled impact of assembly on the timing of client application.

1 Introduction
In a packet based end-to-end communication, the applica-
tion in the end systems initially defines the traffic charac-
teristics, especially the packet size.
This section first highlights the dominance of small pack-
ets and then identifies the problem of small packets within
core networks. The second section proposes our mitiga-
tion of Frame Assembly to overcome this problem in
high-speed networks. This section closes with the related
work and the overview on the organization of this paper.

1.1 Packet transport networks
The driver for packet based transport networks are the
packet based customer networks and the increasing popu-
larity of the Internet. Both of them base on the Internet
Protocol (IP).
In the customer networks as well as in the access net-
works the line rates increased due to the increasing data
volume exchanged, e.g. video and other bandwidth hun-
gry applications.
The TCP/IP stack enables an end-to-end communication
in networks showing small line rates and high latencies.
Consequently, the applications and transport protocols
adapted to these requirements.
Protocols for congestion control and reliable transport
mechanisms enable a robust e2e communication. These
protocols (e.g. TCP) use an acknowledgement mechanism
for signaling between the sender and the receiver. In gen-
eral, these acknowledgements have a small packet size
below 100 Byte.
For performance issues, applications reduced their packet
size to avoid large transmission delays and packet loss
due to congestion. Time critical applications for voice and
video and narrow band applications also use packet sizes
in the range of 100 to 250 Byte (P and B frames in a video
application).
While the network technology and especially the line rate
changed during the time, the applications and transport

protocols did not fully adapt to the new environment. A
recent study of [5] shows that about 50% of the packets
have a packet size smaller than 100 Byte.
Besides this, IETF RFC879 recommends end-systems to
accept at least 576 Byte packets. This resulted in operat-
ing systems using exactly this transfer unit. Although this
recommendation is from 1983 packet size distributions
from the core network are still able to identify this peak.
In general, due to the dominance of Ethernet in the access
the maximum transfer unit is 1500 Byte.
Consequently, the applications and transport protocols do
not exploit the maximum transfer unit. With the increas-
ing line rate in the access, the packet rate, especially the
packet rate of small packets, also increases. As a result, in
the core network, this burden requires unnecessary fast
header processing capabilities, which is the most compli-
cated and power consuming task in packet core nodes.

1.2 Packet rate reduction
There are two options to exploit the maximum transfer
unit to reduce the packet rate: (1) change the protocol and
application behavior in the end systems to exploit the
maximum transfer unit; (2) assemble small packets into
larger containers in the network.
The first solution requires changes in the end systems.
This is in general not possible for a network operator as
its influence is quite limited.
The second solution requires changes only in the network
and is independent from the end system protocols and
applications and thus applicable for network operators.
In the following, we consider only the second option
depicted in Figure 1. A network architecture performing
packet assembly requires a special node. This node as-
sembles packets in larger containers. Timer or size
thresholds limit the number of packets per container. The
containers travel the network until the destination node
for disassembly. The disassembly node forwards the indi-

vidual packets in a burst to the access networks, respec-
tively.
Assembled packets and disassembled packets show dif-
ferent traffic characteristics. This fact is one of the major
argues against any frame assembly in the network, al-
though the impact on applications is hard to quantify.
In this paper, we quantify the impact of packet assembly
on the traffic characteristic by formal methods and meas-
urement in a testbed. For this purpose, we designed and
realized a bidirectional assembly node as well as a com-
plete testbed to show the packet assembly concept is func-
tional.

1.3 Related Work
Literature presents several architectures and implementa-
tions of assembly nodes as well as testbeds within the
context of Optical Burst Switching (OBS) networks,
e.g. [1].
For frame switching networks to the best of our knowl-
edge, only Kornaros et al. describe in [9] an assembly
node architecture. The authors present the nodes’ ingress
direction able to assemble packets into fixed sized frames.
They present timer and threshold based assembly at a line
rate of 10 Gbps. Nevertheless, the work lacks the egress
direction with the disassembly part and neglects fragmen-
tation.
[8] shows a detailed investigation on the traffic character-
istics of assembled traffic. They provided the theoretic
background but did not consider the practicability in a
real network scenario. We applied their methodology and
provided a worst case estimation for realistic packet as-
sembly networks.
For the special case of self-similar traffic, Hu provided a
detailed analysis on the effect of the assembled traffic in
[11]. We restrict our analysis to the affected timescale in
the range of the maximum frame assembly time (≈1ms),
where the effect of self-similarity is negligible in core
networks.

1.4 Organization of the paper
In section 2 we introduce the frame switching architecture
and highlight the principle mechanisms. Section 3 is dedi-

cated to the major device in a frame switching network,
section 4 show the implemented demonstrator scenario.
We quantify the impact of frame assembly in section 5
and close our paper with future work and conclusion in
section 6 and 7 respectively.

2 Frame Switching Architecture
Packet assembly of multiple packets avoids the small
packets dilemma. Bursts, frames, or containers are the
names of the resulting aggregates. The terminology de-
pends on the particular transport technology. Throughout
this paper, we call the process frame assembly and the
resulting aggregates frames.
This section introduces the Frame Switching Architecture,
which performs frame assembly to reduce the packet rate
in core networks. It first introduces the basic concepts and
classifies the procedure with respect to today’s framing
procedures. The discussion on the application of packet
assembly in the network and the proposed switching prin-
ciple complete this section.

2.1 Basic Concept
Figure 1 shows a Frame Switching (FS) network. It con-
sists of edge nodes, called Assembly Edge Node (AEN),
and core nodes, called Frame Switches (FSW).
At ingress, the AEN assembles packets into container
frames while the egress AEN performs the disassembly
process. The FSW in between forward the frames from
ingress to egress AEN.
The processing delay in an intermediate FSW depends on
the frame size. As the line rate increases in parallel to the
frame size, the time available to process a frame stays
nearly the same. However, the required processing effort
per node is constant if packet size and line rate increase in
parallel.
Originally, Frame Switching was introduced with modi-
fied ITU-T G.709 containers of the Optical Transport
Network (OTN). However, other technologies like
Ethernet may serve as a container frame format. Manda-
tory to both is the limitation of the frame size in both
technologies (Ethernet Jumbo frames max. 9.6 kByte,
G.709 15.2 kByte). Due to the size limitation, assembled

Figure 1: Frame switching network architecture

packets face fragmentation when using maximum frame
size for maximum throughput. Further, fixed size con-
tainer frames use padding in low load situations.

2.2 Assembly procedure
This section classifies the introduced assembly procedure
to well-known framing procedures currently applied in
carrier networks (e.g., packet over SONET (IETF
RFC2615, Generic Framing Procedure (GFP, [10])).
The conventional term framing denotes the representation
of logical packets on transport bit streams. These packets
arrive randomly with an arbitrary gap in between. The
framing procedure of carrier networks usually maps these
packets onto a constant bit stream. Besides the logical
packets, the framing procedure also maps the gaps be-
tween the packets onto the bit stream. Consequently, the
carrier bit stream is completely occupied and circuit-
switched within the network.
In contrary to this, frame assembly in terms of this paper
works differently. First, frame assembly puts packets
back-to-back without the intermediate gaps into larger
containers. Second, the network forwards these containers
individually in a store and forward, packet-switched man-
ner exploiting potential multiplexing gains.

2.3 Application of packet assembly
This section elaborates on the location of the assembly
functionality in the network.
Packet assembly is only applicable with aggregated traf-
fic. The packet assembly process always introduces a
delay to the assembled packets. As the network perform-
ance and application requirements require a limit of this
delay, the ingress traffic of a FAU should be large enough
to minimize padding. High line rates or multiplexing of
smaller line rates implements this requirement. Conse-

quently, this requirement moves the frame assembly func-
tionality away from access towards network core.
The process of frame assembly itself relies on individual
packet processing. It suffers from the small packet di-
lemma the same way as any other network node would do
without frame assembly. Hence, frame assembly in core
nodes would not save anything. Therefore, the network
edge is the potential operational location of a frame as-
sembly node. There, it still requires the highest packet
processing capabilities, but the inner core could benefit
from a relaxed frame processing rate.
As a result, frame assembly is a core network technology,
which is most efficient applicable at network edges with a
reasonable bit rate hierarchy from access to core.

2.4 Switching principle
Container frame forwarding within the core requires a
routable address, e.g. IP address, or a path identifier to
identify a pre-configured label switched path (LSP).
The former has the advantage of stateless and simple core
switches but inhibits resource reservation, e.g. bandwidth
requirements. The latter requires states within the core
switches but enables resource reservation for traffic engi-
neering purposes and quality of service (QoS).
As traffic engineering is a mandatory issue for any new
network technology, frame switching follows the LSP
principle. LSP maintenance requires a manual or auto-
matic control plane. The most prominent candidate is the
Generalized Multi-Protocol Label Switching protocol
(GMPLS). In [6] the authors showed, that GMPLS also
supports frame switching networks.

3 Frame Assembly Unit
The key element in a frame switched network is the As-
sembly Edge Node (AEN). It assembles packets to frames

Figure 2: Functional architecture of ingress FAU

Figure 3: Functional architecture of egress FAU

in ingress direction and disassembles frames to packets in
egress direction.

3.1 Assembly Edge Node Architecture
The functionality of an AEN consists of the two inde-
pendent functions: switching and assembly; switching of
traffic flows and assembly of aggregated traffic. There-
fore, the realization of an AEN shows two options. (1) A
hybrid device incorporates both functions. For resource
savings, in such a device the switching and the assembly
part may share components, e. g. a common packet
buffer. Nevertheless, the shared components have to suf-
fice a larger number of requirements and are therefore
more complex. (2) A modular approach shows separate
devices for these functionalities.

Figure 5: Architecture of assembly edge node

Figure 5 depicts the architecture of such a modular AEN
composed of one switch and several Frame Assembly
Units (FAU). This approach is highly flexible, as it allows
adding ports to an AEN incrementally. We follow the
modular approach (2) and focus in the following on the
architecture of a FAU. As switches are available for all
packet oriented technologies we regard them as solved.
In the following, we show the functional architecture of a
FAU.

3.2 Functional Architecture of the FAU
This section gives an overview on the architecture and the
functionality of a FAU. We refer to [4] for a detailed
description of this device and its implementation.

Figure 2 depicts the functional architecture of the FAU’s
ingress direction. From left to right, it classifies incoming
packets according to destination egress AEN and CoS
class and assigns them to a corresponding internal For-
warding Equivalent Class (FEC). The subsequent assem-
bly stage assembles packets of the same FEC to frames
(one assembly unit per FEC). Therefore, the FIFO in the
corresponding assembly unit collects arriving packet data.
In every assembly unit, the control block monitors the
FIFO fill level and triggers a frame generation when ex-
ceeding the threshold. A packet arrival into an empty
FIFO starts a timer to avoid starvation. Upon timeout, the
assembly unit generates a frame irrespective of the
amount of available packet data. In case of fixed size
frames, the assembly stage fragments packets to fill
frames completely. It appends padding if the amount of
collected packet data is below the minimum frame size.
Before concatenation to one continuous data block, meta
information is added to enable packet delineation in
egress direction.
The buffering stage stores frames ready for transmission
in case of congestion, while the following scheduler han-
dles the frames according to their Class of Service (CoS).
The MAC encapsulation stage finalizes the frame for
transmission by adding headers and trailers.
Figure 3 shows the functional architecture of the egress
direction of a generic FAU. From left to right, it classifies
incoming frames according to ingress AEN and CoS and
assigns them to an FEC. The MAC decapsulation stage
removes the frame header and trailer.
Every unit in the disassembly stage delineates packets
with help of the meta information added during assembly.
It also drops the meta information as well as padding. In
case of fixed size frames, the last data in a frame may be a
packet fragment. The FIFO queue stores packets and
packet fragments. The control block monitors the FIFO. If
it contains an entire packet, it triggers its forwarding.
Similar to ingress direction a buffering stage and a sched-
uling stage take care of packet transmission according to
their CoS.

Figure 4: Demonstrator/Testbed

4 Demonstrator
This section introduces briefly our testbed. The reader
finds a more detailed description of the whole scenario in
[6].
Figure 4 depicts our testbed for the complete FS network
to quantify the impact of packet assembly on the traffic
characteristics. In the lower part it depicts the data plane
while in the upper part it shows the control plane inter-
connection.
Our testbed consists of three AENs (Figure 4 shows only
two AENs because of space limitations) and one core
switch representing the FS core network.
In the data plane, we use Ethernet technology (including
virtual local area networks extension of IEEE 802.1Q) in
the core and in all access networks. In the access we de-
ploy 1 Gigabit Ethernet and in the core 10 Gigabit
Ethernet. Standard Ethernet jumbo frames of 9 kByte
build our container frame within the core. We intercon-
nect the access networks transparently on layer 2 by
transporting all Ethernet packets through the FS network.
Each AEN consists of an aggregation switch and a FAU
(cf. Figure 5). The FAU connects to one of the 10 GE
uplink ports of the switch. The switch classifies incoming
traffic from access side on a per port basis and switches it
to the appropriate outgoing port connected to the FAU.
The classification process applies the Virtual LAN con-
cept at reference point A in Figure 4. Application of
VLAN simplifies classification within the FAU and de-
couples FEC from the attached clients’ MAC addresses.
The FAU classifies incoming packets based on their
VLAN header, assembles packets belonging to one FEC
into Ethernet jumbo frames and forwards them to the core
network.
As FS networks show the connection oriented communi-
cation principle, while Ethernet is connection less, we
emulate a connection in the core. Therefore, one VLAN
per bidirectional connection reflects the end-to-end con-
nectivity between AEN (reference point B in Figure 4).
This also enables class of service differentiation in the
core switch by using the VLAN-priority field in the
jumbo frames VLAN header.
We realized the bidirectional FAU on an evaluation board
with two Xilinx Virtex-4 FX100 FPGAs (one per direc-
tion), two optical 10 Gigabit Ethernet interfaces for data
plane and a 1 Gigabit Ethernet interface for CP connec-
tion. We designed the FAU prototype in VHDL support-
ing seven FECs simultaneously per direction. The authors
provide in [4] an in depth description of the FAU proto-
type architecture and implementation.
We realize the control plane for path maintenance with
the GMPLS control plane implementation of the
DRAGON project [7]. This control plane implements a
virtual router (VLSR) for control plane message process-
ing and a user network interface (UNI) for path requests
and monitoring. Besides this, it includes a path computa-
tion element (NARB) for constraint based path calcula-
tion.

We extended the control channel interface (CCI) between
the control plane nodes and the data plane nodes by a
virtual FAU (VFAU) by a protocol gateway between the
simple network management protocol (SNMP) and the
protocol for configuring the FAU (UMP). We further
modified to UNI to signal the assembly timer value to the
ingress and egress node. Due to the extension, the UNI
also includes the information on the class of service.

5 Performance evaluation
This section provides a performance evaluation on the
packet assembly functionality. It first estimates the per-
formance gain with respect to the reduced header process-
ing rate. Second, it calculates the minimum required load
for packet assembly in normal operation. As a last topic, it
estimates the impact of packet assembly on a downstream
buffer device.

5.1 Performance gain
This section quantifies the performance gain of packet
assembly. We estimate the performance gain with the
following assumptions:
• Packet size distribution of packets to be assembled

range between 64 and 1520 Byte in Ethernet networks,

• Container frame format: kByteLc 9= Ethernet

Jumbo frames, constant frame size
• FAU ingress/egress link rate: Gbpsr 10=

• Minimum packet size in Ethernet networks:

ByteL p 64=

• Ethernet interframing gap and preamble: ByteI 20=

The minimum packet size requires the maximum packet

processing rate pr in the node. This rate evaluates to

Mpps
IL

r
r

p

p 9.14=
+

= (mega packet per sec.).

The same traffic assembled in Jumbo frames requires only

kpps
IL

r
r

c

c 139=
+

= (kilo packet per sec.)

The reduction in the required header processing capability
is more than factor 100, although the Jumbo frame ex-
ceeds the maximum payload packet size only by factor 6.
The benefit of frame assembly is even more impressive in
the case of 100 Gbps links: Without frame assembly, the
required header processing capability would be 149 Mpps
per link. This is challenging to implement, since it is in
range of the clock rate of the underlying ASIC technol-
ogy.

5.2 Minimum nominal load
The frame assembly process usually implements a timer,
a size based threshold or a combination of both. If the
assembly process implements the second option only, it
suffers from the risk of packet starvation in partially filled
frames that do not complete due to missing follow-up
traffic. Therefore, we implement a combination of timer

based and sized based threshold. If the assembly process
reaches the frame size limit or the timeout value, it re-
leases a frame. Consequently, we implement size based

threshold of cL with an additional timer T .

The parameterization of the timer depends on the ex-
pected load situation of the traffic. If the amount of traffic
arriving within the time T is smaller than the frame size

cL , the resulting frames waste capacity as they carry

padding. As an alternative, reducing cL reduces also the

amount of padding, but does not reduce the frame rate
(and the required processing rate) accordingly.
Both effects occur in low load situations and are as such
not exceptional critical. We limit ourselves to the ques-
tion, which minimum nominal load per forwarding
equivalent class is required to limit the timer triggered
frame delivery to exceptional cases.
We assume following benchmark parameters:
• timer value msT 1=

• Jumbo frame size ByteLc 9000=

A constant traffic flow of Mbps
T

Lc 72= would fill the

frames just in time. A fluctuating traffic flow with the
same mean rate would also release some partially filled
frames. Anyway, as a rule of thumb, we can state that
frame switched forwarding equivalence classes should
show not much less than 100 Mbps load. Lower load is
possible but inefficient.

5.3 Jitter and latency
This section classifies the jitter and packet latency due to
packet assembly.
The assembly time of a particular frame depends on the
actually incoming traffic. Its maximum equals the assem-
bly timer, while the minimum depends on the load.
Furthermore, the frame assembly process delays the as-
sembled packets. The packets waiting time depends on
the assembly timer and the arrival of subsequent packets,
which is in general unpredictable. This random waiting

time represents an additional jitter. Jitter in the range of
milliseconds is a commonly accepted effect in packet
forwarding networks. This jitter occurs only once at in-
gress to the core network and does not accumulated
within the core network.
Because of the store and forward mechanism, every core
node adds the transmission delay of the larger frames to
the individual packets delay. The delivery of a 9 kByte
Jumbo frame at 10 Gbps takes less than 8 µs, which is
several orders of magnitude below other jitter contribu-
tions and can therefore be neglected.
For experimental confirmation of our assumptions, we
used the setup of Figure 4. We investigated the impact of
frame assembly on a test flow in the presence of random
background flows. The background flows represent the
aggregated traffic of many independent users, while the
test flow represents the particular traffic of one dedicated
user or application. In Figure 4, we consider the latency of
test flow from node T1 to T2. The background traffic
originates at B1 and terminates at B2. Both flows share
the same forwarding equivalent class and thus use the
same resources in both FAUs.
The background traffic shows an average rate of 0.5, 1, or
2 Gbps, respectively. We compose the background traffic
by an overlay of randomly arriving 10 Mbps application
streams and use the same traffic model as in [3]. T1 in-
jects the test flow in the frame switching network at rate
of 10 Mbps composed by 500 Byte packets showing a
constant inter-arrival time. At T2, we record the latency
of the packets after traversal of the testbed. The assembly
strategy applies a pure size-based threshold of 9 kByte
without any timer. The threshold reflects the maximum
quasi-standard transfer unit of Ethernet.
Figure 6 shows the experimental probability distribution
(histogram method) of the latency for different back-
ground load levels. After removal of the constant propa-
gation delay, the maximum of the distribution shifts recip-
rocally with the traffic load. This fits to the load depend-
ent waiting time during frame assembly. Furthermore, in
low load situations, the waiting time shows a rather long

Figure 6: Packet latency due to frame assembly Figure 7: Buffer performance degradation

tail, but any timer-based assembly limits the maximum
additional delay.

5.4 Downstream buffer performance
degradation

A more subtle problem arises from the clustering of pack-
ets at output of a frame switched network. The packet
delivery process changes the random distribution of pack-
ets into clusters of packets. The original interarrival time
between packets vanishes (cf. Figure 1). The relative shift
of packets on the time scale corresponds to the jitter as
explained above. Successive frame arrivals and frame
disassembly results in successive bursts of packets.
Some of these cases may increase the packet loss due to
degradation of the buffer performance in downstream
packet switches. This is especially critical, since down-
stream packet switches are out of scope of a frame
switched network. In opposite to FS network itself, we
cannot expect any additional adaptation there.
The following analysis relies on the theory of the time
scales in packet traffic as explained in [3] and on the
investigation of buffer operation in presence of applica-
tion streams in [2].
First, we consider the time scale of the packet clustering.
The traffic volume between two consecutive frames re-
mains the same before and after the assembly. Addition-
ally, the assembly timer as well as the packet traffic loads
in combination with the size limitation limits this traffic
volume. The packet position at the egress FAU shifts
within the same interval. The assembly process does not
affect any dimensioning considerations at larger time
scales, e.g. time scale of application buffer holding times
or time scale of application stream duration.
Second, we consider the downstream buffer device after
the egress FAU. Therefore, we consider the traffic charac-
teristic of the assembled frames arriving at the egress
FAU. We assume a size based assembly process, which is
equivalent with the minimum required load assumption of
section 5.2. Here, we distinguish two cases, depicted in
Figure 8 and Figure 9.
The first scenario considers a one-to-one communication
between two FAU, while the second scenario considers a
many to one FAU. In both scenarios, many independent
sources feed the FAU on the network ingress side. Conse-
quently, the arrival process of the packets equals a Pois-
son process (reference point A).
In the first scenario (Figure 8), the interarrival time of the
assembled frames (reference point B) follows an Erlang
distribution depending on the packet load and packet size
distribution especially for maximum size packets [8].
As long as the original packet traffic does not overload
the ingress device, the buffer filling increases at most by
the size of one frame. The process of frame assembly at
ingress separates the frames at distances that prevent from
more than one additional frame content in the buffer on
top of the normal packet load. With a frame size of
9 kByte and typical packet buffers of 130 kByte this addi-
tional load is comparably low.

Figure 8: Single source scenario

Figure 9: Multiple sources scenario

The situation is different in the second scenario depicted
in Figure 9. Here, the packet clusters arrive from many
different and independent frame switched paths (FEC).
For a large number of sources the traffic hitting the egress
FAU converges to a Poisson process (reference point B).
In this scenario, the traffic of each FEC individually sum-
mates to the mean traffic load occurring at the down-
stream buffer device (reference point C). Consequently,
the traffic flow of each FEC in the second scenario is
smaller than in the first scenario. Although, for a worst
case estimation, we assume the frames completely filled.
The theoretical buffer performance depends on the num-
ber of buffer slots, where a buffer slot is the amount of
memory that is able to hold one of the randomly and in-
dependently arriving traffic portions. In Ethernet, this
portion is at maximum 1520 Byte, one packet.
Assembled traffic uses frames of 9 kByte, which blows
off in a packet burst after the egress FAU (reference point
C). A real buffer does not care of the difference between
bursts of individual smaller packets or equally sized large
container frames. It shows a fixed amount of memory, in
our example device, a 10 GEth switch, it is in range of
130 kByte. For individual Ethernet packets (1520 B) this
corresponds to 85 buffer slots, for 9 kByte bursts of pack-
ets it has only 14 buffer slots!
We verified the effect in an experiment. Figure 7 recalls
the theoretical buffer performance curves from [3], which
are set into relation with the experimental results. In the
experiment, we counted packet losses in a 10 GEth switch
in front of a 100 Mbps and of a 1 Gbps downlink.
The reference arrival process was Poisson at packet basis.
In the other case, we used bursts of 6 Ethernet packets
showing also Poisson arrival characteristics. The observed
degradation of buffer performance fits well to the theo-
retically predicted reduction from 85 to 14 buffer slots.
The practical relevance of the results is ambiguous. The
second scenario is possible, but it is very unlikely.
First, the traffic from each FEC is subject to lower load
limits (cf. section 5.2). Large numbers of such flows
would create huge amounts of traffic at the minimum.
Thus, the affected downstream device is still close to the
network core, but not to the end user application.

Second, the buffer performance at packet level according
to Figure 7 is only the prerequisite of the application
stream multiplex (cf. [3]) with anyway much worse over-
all performance figures.

6 Future Work
The introduction of the traffic dependent jitter but also the
buffer degradation due to packet clustering is well inves-
tigated and its impact is estimated to be comparably low
in practically relevant operating conditions. Anyway, for
better confidence of the technology, it is worth to investi-
gate appropriate measures to avoid the undesired side
effects.
The packet release process at the egress node may avoid
burstification by two simple mechanisms. If the assembly
process records the assembly time within the container
frame, the packet forwarding may spread the packets
uniformly across this time interval. If additionally the
original inter-arrival time of the packets is recorded, pack-
ets may be released according with their original interar-
rival time.
Ultimately, as further refinement of the above, the total
waiting time for frame assembly and de-assembly could
be fixed at a value corresponding to the delivery timer.
Any packet (including the first in frame) is time stamped
with its waiting time in the ingress FAU. After frame
arrival at egress, the packets are released according to the
respective waiting time reminder. It is expected that in
this case even the presence of frame assembly in a net-
work domain remains almost undetectable to the outside
world.

7 Conclusion
In this paper, we provided a detailed description on packet
assembly at the network edge to reduce the overall header
processing load in a packet based core network. There-
fore, we designed and implemented an assembly edge
node releasing Ethernet Jumbo frames of 9 kByte carrying
multiple packets.
In a demonstrator scenario, we showed a working setup of
a prototypical core network working on 10 Gbps. The
demonstrator consists of assembly nodes as well as a high
performance switch for network core emulation.
We qualified the doubts on packet assembly regarding the
change of the traffic characteristic. We provided a de-
tailed analysis and showed that our results fit the outcome
from our measurements in the network. We concluded
that packet assembly at the network edge has got an im-
pact on the traffic characteristics, but this impact in negli-
gible compared to other sources of delay in a network. In
normal network operation, it is expected that frame as-
sembly will not even be recognized by any application as
its impact is so low.

Acknowledgement
This work has been funded in parts by the German Fed-
eral Ministry of Education and Research (BMBF Grant
FLINTSTONE 01BP556)

Literature
[1] F. Masetti, et al., Design and implementation of a
multi-terabit optical burst/packet router prototype, in
Optical Fiber Communication Conference and Exhibit,
Mar 2002

[2] W. Lautenschläger, Equivalence Conditions of Buff-
ered and Bufferless Network Architecture, 9. ITG Fachta-
gung Photonische Netze, Leipzig, 2008

[3] W. Lautenschläger. Bandwidth dimensionierung in
stochastic packet networks. In Proceedings of the 8. ITG
Symposium on Photonic Networks, Leipzig, May 2007.

[4] A. Mutter et al. A generic 10 Gbps assembly edge
node and testbed for frame switching networks. In Tri-
dentCom, accepted for publication, 2009.

[5] R. Sinha et al. Internet packet size distributions:
Some observations. Technical Report ISI-TR-2007-643,
USC/Information Sciences Institute, May 2007.

[6] A. Mutter et al., Design and Performance Evaluation
of a Frame Switching Network, submitted to HPSR con-
ference 2009

[7] T. Lehman et al. Dragon: a framework for service
provisioning in heterogeneous grid networks. Communi-
cations Magazine, IEEE, 44(3):84–90, March 2006.

[8] M. de Vega Rodrigo and J. Goetz. An analytical
study of optical burst switching aggregation strategies. In
Proceedings of WOBS 2004, San Jose, October 2004.

[9] G. Kornaros et al., Architecture and implementation
of a frame aggregation unit for optical frame-based
switching, International Conference on FPL 2008.

[10] E. Hernandez-Valencia et al. The Generic Framing
Procedure (GFP): an overview. IEEE Communications
Magazine, 40(5):63–71, May 2002.

[11] G. Hu, K. Dolzer, and C. M. Gauger. Does burst
assembly really reduce self-similarity? In Proceedings of
the Optical Fiber Communication Conference (OFC),
Atlanta, March 2003.

