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Abstract 
Literature has proposed Frame Assembly and its variants multiple times to cope with the ever increasing switching 
density in consequence of increasing link rates. Nevertheless, state-of-the-art networks do not implement and apply it. 
Skepticism of practitioners and investors regard not only the effective gain of frame switching, but also questions of 
control, interfacing and performance impact on the existing Ethernet/IP infrastructure. 
We present an operational prototype network with frame assembly in its core that seamlessly interfaces to existing 
Ethernet technology and seamlessly integrates to a standard conform GMPLS control plane. We show the manageable 
additional effort of assembly at the network edge, the direction how to integrate such network into existing control 
structures, but also the limited and well controlled impact of assembly on the timing of client application. 
 

1 Introduction 
In a packet based end-to-end communication, the applica-
tion in the end systems initially defines the traffic charac-
teristics, especially the packet size. 
This section first highlights the dominance of small pack-
ets and then identifies the problem of small packets within 
core networks. The second section proposes our mitiga-
tion of Frame Assembly to overcome this problem in 
high-speed networks. This section closes with the related 
work and the overview on the organization of this paper. 

1.1 Packet transport networks 
The driver for packet based transport networks are the 
packet based customer networks and the increasing popu-
larity of the Internet. Both of them base on the Internet 
Protocol (IP). 
In the customer networks as well as in the access net-
works the line rates increased due to the increasing data 
volume exchanged, e.g. video and other bandwidth hun-
gry applications. 
The TCP/IP stack enables an end-to-end communication 
in networks showing small line rates and high latencies. 
Consequently, the applications and transport protocols 
adapted to these requirements. 
Protocols for congestion control and reliable transport 
mechanisms enable a robust e2e communication. These 
protocols (e.g. TCP) use an acknowledgement mechanism 
for signaling between the sender and the receiver. In gen-
eral, these acknowledgements have a small packet size 
below 100 Byte. 
For performance issues, applications reduced their packet 
size to avoid large transmission delays and packet loss 
due to congestion. Time critical applications for voice and 
video and narrow band applications also use packet sizes 
in the range of 100 to 250 Byte (P and B frames in a video 
application). 
While the network technology and especially the line rate 
changed during the time, the applications and transport 

protocols did not fully adapt to the new environment. A 
recent study of [5] shows that about 50% of the packets 
have a packet size smaller than 100 Byte. 
Besides this, IETF RFC879 recommends end-systems to 
accept at least 576 Byte packets. This resulted in operat-
ing systems using exactly this transfer unit. Although this 
recommendation is from 1983 packet size distributions 
from the core network are still able to identify this peak. 
In general, due to the dominance of Ethernet in the access 
the maximum transfer unit is 1500 Byte. 
Consequently, the applications and transport protocols do 
not exploit the maximum transfer unit. With the increas-
ing line rate in the access, the packet rate, especially the 
packet rate of small packets, also increases. As a result, in 
the core network, this burden requires unnecessary fast 
header processing capabilities, which is the most compli-
cated and power consuming task in packet core nodes. 

1.2 Packet rate reduction 
There are two options to exploit the maximum transfer 
unit to reduce the packet rate: (1) change the protocol and 
application behavior in the end systems to exploit the 
maximum transfer unit; (2) assemble small packets into 
larger containers in the network. 
The first solution requires changes in the end systems. 
This is in general not possible for a network operator as 
its influence is quite limited. 
The second solution requires changes only in the network 
and is independent from the end system protocols and 
applications and thus applicable for network operators. 
In the following, we consider only the second option 
depicted in Figure 1. A network architecture performing 
packet assembly requires a special node. This node as-
sembles packets in larger containers. Timer or size 
thresholds limit the number of packets per container. The 
containers travel the network until the destination node 
for disassembly. The disassembly node forwards the indi-



vidual packets in a burst to the access networks, respec-
tively. 
Assembled packets and disassembled packets show dif-
ferent traffic characteristics. This fact is one of the major 
argues against any frame assembly in the network, al-
though the impact on applications is hard to quantify. 
In this paper, we quantify the impact of packet assembly 
on the traffic characteristic by formal methods and meas-
urement in a testbed. For this purpose, we designed and 
realized a bidirectional assembly node as well as a com-
plete testbed to show the packet assembly concept is func-
tional. 

1.3 Related Work 
Literature presents several architectures and implementa-
tions of assembly nodes as well as testbeds within the 
context of Optical Burst Switching (OBS) networks, 
e.g. [1]. 
For frame switching networks to the best of our knowl-
edge, only Kornaros et al. describe in [9] an assembly 
node architecture. The authors present the nodes’ ingress 
direction able to assemble packets into fixed sized frames. 
They present timer and threshold based assembly at a line 
rate of 10 Gbps. Nevertheless, the work lacks the egress 
direction with the disassembly part and neglects fragmen-
tation. 
[8] shows a detailed investigation on the traffic character-
istics of assembled traffic. They provided the theoretic 
background but did not consider the practicability in a 
real network scenario. We applied their methodology and 
provided a worst case estimation for realistic packet as-
sembly networks. 
For the special case of self-similar traffic, Hu provided a 
detailed analysis on the effect of the assembled traffic in 
[11]. We restrict our analysis to the affected timescale in 
the range of the maximum frame assembly time (≈1ms), 
where the effect of self-similarity is negligible in core 
networks. 

1.4 Organization of the paper 
In section 2 we introduce the frame switching architecture 
and highlight the principle mechanisms. Section 3 is dedi-

cated to the major device in a frame switching network, 
section 4 show the implemented demonstrator scenario. 
We quantify the impact of frame assembly in section 5 
and close our paper with future work and conclusion in 
section 6 and 7 respectively. 

2 Frame Switching Architecture 
Packet assembly of multiple packets avoids the small 
packets dilemma. Bursts, frames, or containers are the 
names of the resulting aggregates. The terminology de-
pends on the particular transport technology. Throughout 
this paper, we call the process frame assembly and the 
resulting aggregates frames. 
This section introduces the Frame Switching Architecture, 
which performs frame assembly to reduce the packet rate 
in core networks. It first introduces the basic concepts and 
classifies the procedure with respect to today’s framing 
procedures. The discussion on the application of packet 
assembly in the network and the proposed switching prin-
ciple complete this section. 

2.1 Basic Concept 
Figure 1 shows a Frame Switching (FS) network. It con-
sists of edge nodes, called Assembly Edge Node (AEN), 
and core nodes, called Frame Switches (FSW). 
At ingress, the AEN assembles packets into container 
frames while the egress AEN performs the disassembly 
process. The FSW in between forward the frames from 
ingress to egress AEN. 
The processing delay in an intermediate FSW depends on 
the frame size. As the line rate increases in parallel to the 
frame size, the time available to process a frame stays 
nearly the same. However, the required processing effort 
per node is constant if packet size and line rate increase in 
parallel. 
Originally, Frame Switching was introduced with modi-
fied ITU-T G.709 containers of the Optical Transport 
Network (OTN). However, other technologies like 
Ethernet may serve as a container frame format. Manda-
tory to both is the limitation of the frame size in both 
technologies (Ethernet Jumbo frames max. 9.6 kByte, 
G.709 15.2 kByte). Due to the size limitation, assembled 

Figure 1: Frame switching network architecture  



packets face fragmentation when using maximum frame 
size for maximum throughput. Further, fixed size con-
tainer frames use padding in low load situations. 

2.2 Assembly procedure 
This section classifies the introduced assembly procedure 
to well-known framing procedures currently applied in 
carrier networks (e.g., packet over SONET (IETF 
RFC2615, Generic Framing Procedure (GFP, [10])). 
The conventional term framing denotes the representation 
of logical packets on transport bit streams. These packets 
arrive randomly with an arbitrary gap in between. The 
framing procedure of carrier networks usually maps these 
packets onto a constant bit stream. Besides the logical 
packets, the framing procedure also maps the gaps be-
tween the packets onto the bit stream. Consequently, the 
carrier bit stream is completely occupied and circuit-
switched within the network. 
In contrary to this, frame assembly in terms of this paper 
works differently. First, frame assembly puts packets 
back-to-back without the intermediate gaps into larger 
containers. Second, the network forwards these containers 
individually in a store and forward, packet-switched man-
ner exploiting potential multiplexing gains. 

2.3 Application of packet assembly 
This section elaborates on the location of the assembly 
functionality in the network. 
Packet assembly is only applicable with aggregated traf-
fic. The packet assembly process always introduces a 
delay to the assembled packets. As the network perform-
ance and application requirements require a limit of this 
delay, the ingress traffic of a FAU should be large enough 
to minimize padding. High line rates or multiplexing of 
smaller line rates implements this requirement. Conse-

quently, this requirement moves the frame assembly func-
tionality away from access towards network core. 
The process of frame assembly itself relies on individual 
packet processing. It suffers from the small packet di-
lemma the same way as any other network node would do 
without frame assembly. Hence, frame assembly in core 
nodes would not save anything. Therefore, the network 
edge is the potential operational location of a frame as-
sembly node. There, it still requires the highest packet 
processing capabilities, but the inner core could benefit 
from a relaxed frame processing rate. 
As a result, frame assembly is a core network technology, 
which is most efficient applicable at network edges with a 
reasonable bit rate hierarchy from access to core. 

2.4 Switching principle 
Container frame forwarding within the core requires a 
routable address, e.g. IP address, or a path identifier to 
identify a pre-configured label switched path (LSP). 
The former has the advantage of stateless and simple core 
switches but inhibits resource reservation, e.g. bandwidth 
requirements. The latter requires states within the core 
switches but enables resource reservation for traffic engi-
neering purposes and quality of service (QoS). 
As traffic engineering is a mandatory issue for any new 
network technology, frame switching follows the LSP 
principle. LSP maintenance requires a manual or auto-
matic control plane. The most prominent candidate is the 
Generalized Multi-Protocol Label Switching protocol 
(GMPLS). In [6] the authors showed, that GMPLS also 
supports frame switching networks. 

3 Frame Assembly Unit 
The key element in a frame switched network is the As-
sembly Edge Node (AEN). It assembles packets to frames 

Figure 2: Functional architecture of ingress FAU 

Figure 3: Functional architecture of egress FAU 



in ingress direction and disassembles frames to packets in 
egress direction. 

3.1 Assembly Edge Node Architecture 
The functionality of an AEN consists of the two inde-
pendent functions: switching and assembly; switching of 
traffic flows and assembly of aggregated traffic. There-
fore, the realization of an AEN shows two options. (1) A 
hybrid device incorporates both functions. For resource 
savings, in such a device the switching and the assembly 
part may share components, e. g. a common packet 
buffer. Nevertheless, the shared components have to suf-
fice a larger number of requirements and are therefore 
more complex. (2) A modular approach shows separate 
devices for these functionalities. 

 

Figure 5: Architecture of assembly edge node 

Figure 5 depicts the architecture of such a modular AEN 
composed of one switch and several Frame Assembly 
Units (FAU). This approach is highly flexible, as it allows 
adding ports to an AEN incrementally. We follow the 
modular approach (2) and focus in the following on the 
architecture of a FAU. As switches are available for all 
packet oriented technologies we regard them as solved. 
In the following, we show the functional architecture of a 
FAU. 

3.2 Functional Architecture of the FAU 
This section gives an overview on the architecture and the 
functionality of a FAU. We refer to [4] for a detailed 
description of this device and its implementation. 

Figure 2 depicts the functional architecture of the FAU’s 
ingress direction. From left to right, it classifies incoming 
packets according to destination egress AEN and CoS 
class and assigns them to a corresponding internal For-
warding Equivalent Class (FEC). The subsequent assem-
bly stage assembles packets of the same FEC to frames 
(one assembly unit per FEC). Therefore, the FIFO in the 
corresponding assembly unit collects arriving packet data. 
In every assembly unit, the control block monitors the 
FIFO fill level and triggers a frame generation when ex-
ceeding the threshold. A packet arrival into an empty 
FIFO starts a timer to avoid starvation. Upon timeout, the 
assembly unit generates a frame irrespective of the 
amount of available packet data. In case of fixed size 
frames, the assembly stage fragments packets to fill 
frames completely. It appends padding if the amount of 
collected packet data is below the minimum frame size. 
Before concatenation to one continuous data block, meta 
information is added to enable packet delineation in 
egress direction. 
The buffering stage stores frames ready for transmission 
in case of congestion, while the following scheduler han-
dles the frames according to their Class of Service (CoS). 
The MAC encapsulation stage finalizes the frame for 
transmission by adding headers and trailers. 
Figure 3 shows the functional architecture of the egress 
direction of a generic FAU. From left to right, it classifies 
incoming frames according to ingress AEN and CoS and 
assigns them to an FEC. The MAC decapsulation stage 
removes the frame header and trailer. 
Every unit in the disassembly stage delineates packets 
with help of the meta information added during assembly. 
It also drops the meta information as well as padding. In 
case of fixed size frames, the last data in a frame may be a 
packet fragment. The FIFO queue stores packets and 
packet fragments. The control block monitors the FIFO. If 
it contains an entire packet, it triggers its forwarding. 
Similar to ingress direction a buffering stage and a sched-
uling stage take care of packet transmission according to 
their CoS. 

Figure 4: Demonstrator/Testbed 



4 Demonstrator 
This section introduces briefly our testbed. The reader 
finds a more detailed description of the whole scenario in 
[6]. 
Figure 4 depicts our testbed for the complete FS network 
to quantify the impact of packet assembly on the traffic 
characteristics. In the lower part it depicts the data plane 
while in the upper part it shows the control plane inter-
connection. 
Our testbed consists of three AENs (Figure 4 shows only 
two AENs because of space limitations) and one core 
switch representing the FS core network. 
In the data plane, we use Ethernet technology (including 
virtual local area networks extension of IEEE 802.1Q) in 
the core and in all access networks. In the access we de-
ploy 1 Gigabit Ethernet and in the core 10 Gigabit 
Ethernet. Standard Ethernet jumbo frames of 9 kByte 
build our container frame within the core. We intercon-
nect the access networks transparently on layer 2 by 
transporting all Ethernet packets through the FS network. 
Each AEN consists of an aggregation switch and a FAU 
(cf. Figure 5). The FAU connects to one of the 10 GE 
uplink ports of the switch. The switch classifies incoming 
traffic from access side on a per port basis and switches it 
to the appropriate outgoing port connected to the FAU. 
The classification process applies the Virtual LAN con-
cept at reference point A in Figure 4. Application of 
VLAN simplifies classification within the FAU and de-
couples FEC from the attached clients’ MAC addresses. 
The FAU classifies incoming packets based on their 
VLAN header, assembles packets belonging to one FEC 
into Ethernet jumbo frames and forwards them to the core 
network. 
As FS networks show the connection oriented communi-
cation principle, while Ethernet is connection less, we 
emulate a connection in the core. Therefore, one VLAN 
per bidirectional connection reflects the end-to-end con-
nectivity between AEN (reference point B in Figure 4). 
This also enables class of service differentiation in the 
core switch by using the VLAN-priority field in the 
jumbo frames VLAN header. 
We realized the bidirectional FAU on an evaluation board 
with two Xilinx Virtex-4 FX100 FPGAs (one per direc-
tion), two optical 10 Gigabit Ethernet interfaces for data 
plane and a 1 Gigabit Ethernet interface for CP connec-
tion. We designed the FAU prototype in VHDL support-
ing seven FECs simultaneously per direction. The authors 
provide in [4] an in depth description of the FAU proto-
type architecture and implementation. 
We realize the control plane for path maintenance with 
the GMPLS control plane implementation of the 
DRAGON project [7]. This control plane implements a 
virtual router (VLSR) for control plane message process-
ing and a user network interface (UNI) for path requests 
and monitoring. Besides this, it includes a path computa-
tion element (NARB) for constraint based path calcula-
tion. 

We extended the control channel interface (CCI) between 
the control plane nodes and the data plane nodes by a 
virtual FAU (VFAU) by a protocol gateway between the 
simple network management protocol (SNMP) and the 
protocol for configuring the FAU (UMP). We further 
modified to UNI to signal the assembly timer value to the 
ingress and egress node. Due to the extension, the UNI 
also includes the information on the class of service. 

5 Performance evaluation 
This section provides a performance evaluation on the 
packet assembly functionality. It first estimates the per-
formance gain with respect to the reduced header process-
ing rate. Second, it calculates the minimum required load 
for packet assembly in normal operation. As a last topic, it 
estimates the impact of packet assembly on a downstream 
buffer device. 

5.1 Performance gain 
This section quantifies the performance gain of packet 
assembly. We estimate the performance gain with the 
following assumptions: 
• Packet size distribution of packets to be assembled 

range between 64 and 1520 Byte in Ethernet networks, 

• Container frame format: kByteLc 9=  Ethernet 

Jumbo frames, constant frame size 
• FAU ingress/egress link rate: Gbpsr 10=  

• Minimum packet size in Ethernet networks: 

ByteL p 64=  

• Ethernet interframing gap and preamble: ByteI 20=  

The minimum packet size requires the maximum packet 

processing rate pr  in the node. This rate evaluates to 

Mpps
IL

r
r

p

p 9.14=
+

=  (mega packet per sec.). 

The same traffic assembled in Jumbo frames requires only 

kpps
IL

r
r

c

c 139=
+

=  (kilo packet per sec.) 

The reduction in the required header processing capability 
is more than factor 100, although the Jumbo frame ex-
ceeds the maximum payload packet size only by factor 6. 
The benefit of frame assembly is even more impressive in 
the case of 100 Gbps links: Without frame assembly, the 
required header processing capability would be 149 Mpps 
per link. This is challenging to implement, since it is in 
range of the clock rate of the underlying ASIC technol-
ogy. 

5.2 Minimum nominal load 
The frame assembly process usually implements a timer, 
a size based threshold or a combination of both. If the 
assembly process implements the second option only, it 
suffers from the risk of packet starvation in partially filled 
frames that do not complete due to missing follow-up 
traffic. Therefore, we implement a combination of timer 



based and sized based threshold. If the assembly process 
reaches the frame size limit or the timeout value, it re-
leases a frame. Consequently, we implement size based 

threshold of cL  with an additional timer T . 

The parameterization of the timer depends on the ex-
pected load situation of the traffic. If the amount of traffic 
arriving within the time T  is smaller than the frame size 

cL , the resulting frames waste capacity as they carry 

padding. As an alternative, reducing cL  reduces also the 

amount of padding, but does not reduce the frame rate 
(and the required processing rate) accordingly. 
Both effects occur in low load situations and are as such 
not exceptional critical. We limit ourselves to the ques-
tion, which minimum nominal load per forwarding 
equivalent class is required to limit the timer triggered 
frame delivery to exceptional cases.  
We assume following benchmark parameters: 
• timer value msT 1=  

• Jumbo frame size ByteLc 9000=  

A constant traffic flow of Mbps
T

Lc 72=  would fill the 

frames just in time. A fluctuating traffic flow with the 
same mean rate would also release some partially filled 
frames. Anyway, as a rule of thumb, we can state that 
frame switched forwarding equivalence classes should 
show not much less than 100 Mbps load. Lower load is 
possible but inefficient. 

5.3 Jitter and latency 
This section classifies the jitter and packet latency due to 
packet assembly.  
The assembly time of a particular frame depends on the 
actually incoming traffic. Its maximum equals the assem-
bly timer, while the minimum depends on the load. 
Furthermore, the frame assembly process delays the as-
sembled packets. The packets waiting time depends on 
the assembly timer and the arrival of subsequent packets, 
which is in general unpredictable. This random waiting 

time represents an additional jitter. Jitter in the range of 
milliseconds is a commonly accepted effect in packet 
forwarding networks. This jitter occurs only once at in-
gress to the core network and does not accumulated 
within the core network. 
Because of the store and forward mechanism, every core 
node adds the transmission delay of the larger frames to 
the individual packets delay. The delivery of a 9 kByte 
Jumbo frame at 10 Gbps takes less than 8 µs, which is 
several orders of magnitude below other jitter contribu-
tions and can therefore be neglected. 
For experimental confirmation of our assumptions, we 
used the setup of Figure 4. We investigated the impact of 
frame assembly on a test flow in the presence of random 
background flows. The background flows represent the 
aggregated traffic of many independent users, while the 
test flow represents the particular traffic of one dedicated 
user or application. In Figure 4, we consider the latency of 
test flow from node T1 to T2. The background traffic 
originates at B1 and terminates at B2. Both flows share 
the same forwarding equivalent class and thus use the 
same resources in both FAUs.  
The background traffic shows an average rate of 0.5, 1, or 
2 Gbps, respectively. We compose the background traffic 
by an overlay of randomly arriving 10 Mbps application 
streams and use the same traffic model as in [3]. T1 in-
jects the test flow in the frame switching network at rate 
of 10 Mbps composed by 500 Byte packets showing a 
constant inter-arrival time. At T2, we record the latency 
of the packets after traversal of the testbed. The assembly 
strategy applies a pure size-based threshold of 9 kByte 
without any timer. The threshold reflects the maximum 
quasi-standard transfer unit of Ethernet. 
Figure 6 shows the experimental probability distribution 
(histogram method) of the latency for different back-
ground load levels. After removal of the constant propa-
gation delay, the maximum of the distribution shifts recip-
rocally with the traffic load. This fits to the load depend-
ent waiting time during frame assembly. Furthermore, in 
low load situations, the waiting time shows a rather long 

Figure 6: Packet latency due to frame assembly Figure 7: Buffer performance degradation 



tail, but any timer-based assembly limits the maximum 
additional delay. 

5.4 Downstream buffer performance 
degradation 

A more subtle problem arises from the clustering of pack-
ets at output of a frame switched network. The packet 
delivery process changes the random distribution of pack-
ets into clusters of packets. The original interarrival time 
between packets vanishes (cf. Figure 1). The relative shift 
of packets on the time scale corresponds to the jitter as 
explained above. Successive frame arrivals and frame 
disassembly results in successive bursts of packets. 
Some of these cases may increase the packet loss due to 
degradation of the buffer performance in downstream 
packet switches. This is especially critical, since down-
stream packet switches are out of scope of a frame 
switched network. In opposite to FS network itself, we 
cannot expect any additional adaptation there. 
The following analysis relies on the theory of the time 
scales in packet traffic as explained in [3] and on the 
investigation of buffer operation in presence of applica-
tion streams in [2]. 
First, we consider the time scale of the packet clustering. 
The traffic volume between two consecutive frames re-
mains the same before and after the assembly. Addition-
ally, the assembly timer as well as the packet traffic loads 
in combination with the size limitation limits this traffic 
volume. The packet position at the egress FAU shifts 
within the same interval. The assembly process does not 
affect any dimensioning considerations at larger time 
scales, e.g. time scale of application buffer holding times 
or time scale of application stream duration. 
Second, we consider the downstream buffer device after 
the egress FAU. Therefore, we consider the traffic charac-
teristic of the assembled frames arriving at the egress 
FAU. We assume a size based assembly process, which is 
equivalent with the minimum required load assumption of 
section 5.2. Here, we distinguish two cases, depicted in 
Figure 8 and Figure 9. 
The first scenario considers a one-to-one communication 
between two FAU, while the second scenario considers a 
many to one FAU. In both scenarios, many independent 
sources feed the FAU on the network ingress side. Conse-
quently, the arrival process of the packets equals a Pois-
son process (reference point A). 
In the first scenario (Figure 8), the interarrival time of the 
assembled frames (reference point B) follows an Erlang 
distribution depending on the packet load and packet size 
distribution especially for maximum size packets [8]. 
As long as the original packet traffic does not overload 
the ingress device, the buffer filling increases at most by 
the size of one frame. The process of frame assembly at 
ingress separates the frames at distances that prevent from 
more than one additional frame content in the buffer on 
top of the normal packet load. With a frame size of 
9 kByte and typical packet buffers of 130 kByte this addi-
tional load is comparably low. 

 

Figure 8: Single source scenario 

 

Figure 9: Multiple sources scenario 

The situation is different in the second scenario depicted 
in Figure 9. Here, the packet clusters arrive from many 
different and independent frame switched paths (FEC). 
For a large number of sources the traffic hitting the egress 
FAU converges to a Poisson process (reference point B). 
In this scenario, the traffic of each FEC individually sum-
mates to the mean traffic load occurring at the down-
stream buffer device (reference point C). Consequently, 
the traffic flow of each FEC in the second scenario is 
smaller than in the first scenario. Although, for a worst 
case estimation, we assume the frames completely filled. 
The theoretical buffer performance depends on the num-
ber of buffer slots, where a buffer slot is the amount of 
memory that is able to hold one of the randomly and in-
dependently arriving traffic portions. In Ethernet, this 
portion is at maximum 1520 Byte, one packet. 
Assembled traffic uses frames of 9 kByte, which blows 
off in a packet burst after the egress FAU (reference point 
C). A real buffer does not care of the difference between 
bursts of individual smaller packets or equally sized large 
container frames. It shows a fixed amount of memory, in 
our example device, a 10 GEth switch, it is in range of 
130 kByte. For individual Ethernet packets (1520 B) this 
corresponds to 85 buffer slots, for 9 kByte bursts of pack-
ets it has only 14 buffer slots! 
We verified the effect in an experiment. Figure 7 recalls 
the theoretical buffer performance curves from [3], which 
are set into relation with the experimental results. In the 
experiment, we counted packet losses in a 10 GEth switch 
in front of a 100 Mbps and of a 1 Gbps downlink. 
The reference arrival process was Poisson at packet basis. 
In the other case, we used bursts of 6 Ethernet packets 
showing also Poisson arrival characteristics. The observed 
degradation of buffer performance fits well to the theo-
retically predicted reduction from 85 to 14 buffer slots. 
The practical relevance of the results is ambiguous. The 
second scenario is possible, but it is very unlikely. 
First, the traffic from each FEC is subject to lower load 
limits (cf. section 5.2). Large numbers of such flows 
would create huge amounts of traffic at the minimum. 
Thus, the affected downstream device is still close to the 
network core, but not to the end user application. 



Second, the buffer performance at packet level according 
to Figure 7 is only the prerequisite of the application 
stream multiplex (cf. [3]) with anyway much worse over-
all performance figures. 

6 Future Work 
The introduction of the traffic dependent jitter but also the 
buffer degradation due to packet clustering is well inves-
tigated and its impact is estimated to be comparably low 
in practically relevant operating conditions. Anyway, for 
better confidence of the technology, it is worth to investi-
gate appropriate measures to avoid the undesired side 
effects. 
The packet release process at the egress node may avoid 
burstification by two simple mechanisms. If the assembly 
process records the assembly time within the container 
frame, the packet forwarding may spread the packets 
uniformly across this time interval. If additionally the 
original inter-arrival time of the packets is recorded, pack-
ets may be released according with their original interar-
rival time. 
Ultimately, as further refinement of the above, the total 
waiting time for frame assembly and de-assembly could 
be fixed at a value corresponding to the delivery timer. 
Any packet (including the first in frame) is time stamped 
with its waiting time in the ingress FAU. After frame 
arrival at egress, the packets are released according to the 
respective waiting time reminder. It is expected that in 
this case even the presence of frame assembly in a net-
work domain remains almost undetectable to the outside 
world. 

7 Conclusion 
In this paper, we provided a detailed description on packet 
assembly at the network edge to reduce the overall header 
processing load in a packet based core network. There-
fore, we designed and implemented an assembly edge 
node releasing Ethernet Jumbo frames of 9 kByte carrying 
multiple packets. 
In a demonstrator scenario, we showed a working setup of 
a prototypical core network working on 10 Gbps. The 
demonstrator consists of assembly nodes as well as a high 
performance switch for network core emulation. 
We qualified the doubts on packet assembly regarding the 
change of the traffic characteristic. We provided a de-
tailed analysis and showed that our results fit the outcome 
from our measurements in the network. We concluded 
that packet assembly at the network edge has got an im-
pact on the traffic characteristics, but this impact in negli-
gible compared to other sources of delay in a network. In 
normal network operation, it is expected that frame as-
sembly will not even be recognized by any application as 
its impact is so low. 
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