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ABSTRACT
Read barriers synchronize compacting garbage collection and
application processing in a simple yet elegant way. Unfortunately,
read barrier checks are expensive to implement in software, and
even with hardware support, the clustering of read barrier faults
irregularly impairs application progress to an unacceptable extent.
For this reason, read barriers are often considered unsuitable for
hard real-time systems.

In this paper, we introduce a novel hardware read barrier
design for an object-based RISC architecture. The design inte-
grates read barrier checking and, for the first time, read barrier
fault handling directly into a processor pipeline.

Our system handles read barrier faults within 20 clock cycles
on average. Despite fault clustering, all application programs we
have run on our prototype show minimum mutator utilizations of
more that 55% within arbitrary time intervals of only 1ms. Thanks
to this property, our system facilitates worst case estimates for
tasks with very short response times, thereby paving the way for
garbage collection in embedded systems with extremely fine-
grained real-time requirements.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Memory management (garbage collection)

General Terms Design, Algorithms, Languages, Measurement,
Performance, Experimentation

Keywords Real-time garbage collection, object-based processor
architecture, read barrier, hardware support

1. INTRODUCTION
In real-time systems, garbage collection must be performed con-
currently with application processing, either by interleaving the
collector with the application on the same processor, or by running
the collector on a separate processor. In any case, it is imperative to
prevent applications from interfering with the collector’s work and
to ensure that objects are not prematurely reclaimed. To accom-
plish this, either read or write barriers supervise any pointer
accessed by an application.

While write barriers are less expensive than read barriers, they
do not allow garbage collectors to move objects for compaction.
Therefore, they are mainly used with generational or mark-sweep
collectors. In contrast, read barriers realize a higher degree of pro-

tection and allow the collector to relocate objects. Regrettably,
read barriers are considerably more expensive.

The first read barrier was introduced by Baker [1]. Since then,
researchers have invested a lot of effort to reduce the cost of read
barriers, and this paper follows this tradition.

To start with, Section 2 introduces Baker’s original read barrier
and discusses more recent related work. Next, Section 3 gives an
overview of a system with hardware support for garbage collec-
tion, including an object-based RISC processor and a coprocessor
for garbage collection. This system serves as the basis for the work
described in this paper. Thereafter, Section 4 evaluates the costs of
the system’s initial read barrier, Section 5 proposes a novel read
barrier design, and Section 6 presents measurement results from
our prototype. Finally, Section 7 discusses related architectures,
and Section 8 provides a conclusion and identifies potential for
future work.

2. BAKER’S READ BARRIER
Basically, Baker’s algorithm represents a real-time extension to the
non-recursive copying algorithm introduced by Cheney [4]. For
this reason, we first describe Cheney’s algorithm and then proceed
to the enhancements added by Baker. Finally, we discuss the prob-
lems of Baker’s algorithm with respect to real-time performance in
general as well as the issues with Baker’s read barrier in particular.

2.1 Cheney’s Copying Collector
Copying collectors like Cheney’s divide the heap into two areas
called semispaces. During collection, all objects that are reachable
from a set of roots are copied from one semispace (fromspace) to
the other semispace (tospace). This way, copying collectors inher-
ently compact the heap. At the beginning of a garbage collection
cycle, Cheney’s collector flips the roles of fromspace and tospace
and initializes two pointers called scan and free to point to the bot-
tom of tospace. Next, it evacuates all objects referenced by the root
set from fromspace to tospace (Figure 1, upper diagram, assuming
that only A is referenced by the root set). During evacuation, the
collector just copies the contents of an object, so the pointers
inside the tospace copy still refer to the original objects in from-
space. After evacuation, the garbage collector advances free and
overwrites the first word in the fromspace object with a forwarding
pointer to the tospace copy. Although it is safe to overwrite the
contents of evacuated objects in fromspace, Cheney’s algorithm
requires at least one bit per object to distinguish evacuated objects
from objects that have not yet been visited by the collector.

After the collector has evacuated all objects referenced by the
root set, it successively scans tospace locations pointed to by scan.
If the collector encounters a pointer, it checks whether the corre-
sponding object has already been evacuated by the collector. If so,
it overwrites that pointer with the forwarding pointer found in the
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fromspace object. If not, it evacuates the corresponding object as
described above and updates the pointer to refer to the tospace
copy (Figure 1, lower diagram). In this way, the collector consecu-
tively replaces all pointers to fromspace objects with pointers to
their tospace copies. The algorithm terminates as soon as scan
catches up with free.

For illustration purposes, object states during garbage collec-
tion are often described by Dijkstra’s tricolor abstraction [6]. In
this abstraction, black indicates that the collector has finished with
an object for the current garbage collection cycle, gray indicates
that the collector has not finished with the object or, for some rea-
son, has to visit the object again, and white indicates that the object
has not been visited by the collector. Applying Dijkstra’s tricolor
abstraction to Cheney’s algorithm, tospace objects below scan are
black, objects between scan and free are gray, and unevacuated
objects in fromspace are white.

Strictly speaking, the term garbage collection is not at all
appropriate to describe copying collectors like Cheney’s. Rather
than collecting garbage, a copying collector just picks live objects
and saves them to tospace. This way, it only collects useful data
and effectively ignores any garbage. As a resulting benefit, the cost
of copying garbage collection is solely proportional to the amount
of live data. In contrast, the cost of mark-sweep collection is pro-
portional to the size of the heap.

2.2 Baker’s Extensions
Cheney’s collector suspends application processing for the entire
duration of a garbage collection cycle. It is therefore referred to as
a “stop-the-world” collector and as such unsuitable for interactive
systems or real-time applications. To break this restriction, Baker

extended Cheney’s algorithm and allows the application to proceed
during garbage collection. In this context, the application program
is usually referred to as the mutator, because it changes the graph
of objects while the collector is traversing the heap.

According to Baker’s proposal, the mutator allocates new
objects from the top end of tospace while the collector compacts
surviving objects into its bottom end. As a consequence, all new
objects are allocated black. In order to prevent new objects from
overwriting surviving objects, an appropriate scheduling mecha-
nism has to ensure that the garbage collector completes a cycle
before newly allocated objects reach the free pointer.

Baker’s algorithm faces a multiple-reader, multiple-writer
coherency problem. If both the mutator and the collector are
allowed to read and write the heap without restriction, problems
may arise if the mutator writes a pointer to a white object into a
black object. If the original pointer to the white object is destroyed
and no further pointer to the white object exists, the object will be
illegally discarded at the end of the garbage collection cycle. For
this reason, Baker’s algorithm erects a read barrier between the
mutator and the heap to protect the garbage collector. This barrier
examines every pointer that the mutator loads from memory.
Whenever the mutator is about to access a pointer to a white object
(i.e. to an object in fromspace), the read barrier immediately evac-
uates the object, or, if the object has already been evacuated, reads
the forwarding pointer. In either case, the barrier replaces the from-
space pointer with a tospace pointer, and so the mutator exclu-
sively sees pointers to tospace. Thanks to this tospace invariant
maintained by the read barrier, the mutator can never disrupt the
garbage collector by installing a white pointer into a black object,
and so the garbage collector will never lose sight of unprocessed
objects.

Usually, the read barrier is realized by a compiler that inserts a
short code sequence after each pointer load. This sequence checks
whether the loaded pointer refers to a white object. In this case,
subsequently referred to as a read barrier fault, the read barrier
code calls a routine (the read barrier fault handler) that converts
the white pointer to a gray or black pointer as described above.

Baker’s algorithm is extremely elegant and considerably sim-
plifies implementations. Without the read barrier, the mutator
would always have to deal with two different identifiers for a sin-
gle object. Thus, simple operations like the comparison of two
pointers would become difficult to implement. In contrast, the
presence of the read barrier and the tospace invariant enable the
mutator to uniquely identify each object by means of its address in
tospace.

2.3 Baker’s Algorithm and Real-Time
Incremental garbage collectors like Baker’s regularly pause the
mutator, either to perform an increment of garbage collection
work, or to synchronize the mutator with the collector, such as by
the read barrier. Hard real-time systems, however, require correct
responses to environmental changes within a specified amount of
time. For this reason, real-time garbage collectors must always
leave a guaranteed fraction of processing time to the mutator. To
quantify this property, Cheng and Blelloch introduce the term min-
imum mutator utilization (MMU) as the fraction of time that the
mutator is guaranteed to run within a given time quantum [5].

A garbage collector for real-time systems must satisfy two con-
ditions to achieve a given minimum of mutator utilization. First,
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the duration of all pauses must be bounded by a constant, and this
constant must be smaller than the considered time quantum. Sec-
ond, pauses must not be too heavily clustered. Unfortunately,
Baker’s algorithm fails to meet these conditions in multiple
respects. The following paragraphs identify the main issues with
the algorithm and briefly summarize more recent work that aims at
resolving or ameliorating these issues.

Work-based scheduling. Baker couples the garbage collector to
the mutator and performs a certain amount of garbage collection at
each allocation. This way of interleaving the mutator with the col-
lector is often referred to as work-based scheduling. Using work-
based scheduling, however, the garbage collection overhead is
clustered with allocations and does not smooth out over a garbage
collection cycle. For this reason, more recent algorithms [2] favor
time-based scheduling over work-based scheduling and interleave
the mutator with the collector based on fixed time intervals. This
way, they decouple the garbage collector from the mutator’s allo-
cation behavior and evenly distribute the garbage collection over-
head over time, resulting in superior mutator utilization.

Incremental stack processing. According to Baker’s algorithm,
the garbage collector must process the root set in an indivisible
fashion. Since root sets usually include a program stack of poten-
tially unbounded size, the time needed to process the root set is
unbounded as well. To solve this problem, one option is to scan the
stack incrementally. In this case, however, the mutator has to
extend the read barrier to stack accesses, including accesses to
local variables that are currently not available in registers. Because
of the high frequency of stack accesses, the overhead of this option
is usually considered too high. Other methods to address the root
set problem include stacklets [5] and root set copies in the heap
[14]. Yet, these methods are expensive to implement and introduce
a number of new problems. In summary, efficient incremental
stack processing is still an open issue.

Incremental compaction. Baker’s original collector copies
objects atomically when it evacuates them from fromspace to
tospace. As a consequence, the duration of pauses caused by copy-
ing depends on the size of objects and is not bounded by a small
constant. To address this issue, Baker proposes a refined version of
his algorithm, but credits Steele for the primary idea [1]. This
refined version does not copy objects during evacuation. Instead, it
merely allocates an empty object frame in tospace and uses a back-
link to doubly link the tospace frame to the fromspace original. It
is not until the garbage collector’s scan pointer eventually reaches
an empty object frame in tospace that the garbage collector actu-
ally copies the corresponding object. The cost for this sort of lazy
copying, however, has to be paid by the mutator. Whenever the
mutator accesses an object, it has to check whether the correspond-
ing object is gray, and if so, determine the current state of garbage
collection. If the requested field inside the object has already been
copied, the mutator has to access the object’s tospace copy. If not,
it has to follow the backlink in order to access the fromspace origi-
nal. In contrast to read or write barriers, this elaborate procedure is
required for pointer and non-pointer loads and stores. Without
hardware support, the resulting overhead is generally considered
prohibitive.

To avoid the cost of Steele’s fine-grained synchronization, real-
time garbage collectors in software do not directly support arbi-
trarily large objects. Instead, they either compose all objects of
fixed-sized blocks and organize these as linked lists or trees [14],

or they split only arrays into fixed-sized arraylets [2]. In either
case, the mutator has to replace all appendant loads and stores
through access sequences that follow chains of pointers. However,
these access sequences may cause notable runtime and code size
overhead. Furthermore, the decomposition of objects requires stor-
age for auxiliary pointers.

2.4 Issues with Baker’s Read Barrier
In the last section, we have summarized three general problems
that more or less apply to any real-time garbage collector. In this
section, we will concentrate on the cost of Baker’s read barrier and
of the tospace invariant it preserves.

In software, read barriers are realized by compiler-inserted
code sequences. As such, read barriers cause three major prob-
lems. First of all, they inflate the program code and, in doing so,
decrease the efficiency of an instruction cache. Second, the execu-
tion of the read barrier code results in considerable runtime over-
head. Finally, compiler-supported synchronization mechanisms
like read barriers introduce a strong dependency between compiled
programs and a particular version of a garbage collector. There-
fore, major updates of the garbage collector are likely to necessi-
tate the recompilation of any application program.

In principle, all these problems apply to write barriers in the
same way as to read barriers. However, since pointer loads are con-
siderably more frequent than pointer stores, the overhead of read
barriers is much higher than that of write barriers. Although Zorn
found that the total runtime overhead of read barriers can be less
than 20%, he also observed that read barriers typically double the
size of compiled programs [16]. Therefore, while write barriers are
considered practicable in software, it is often argued that Baker-
style read barriers require hardware support for adequate perfor-
mance [8].

The worst property of Baker’s read barrier, however, is that
read barrier faults are unevenly distributed over time. After a flip,
all pointers are still white, so the majority of pointer loads will trig-
ger read barrier faults. As a consequence, the pauses caused by the
read barrier are clustered at the beginning of a garbage collection
cycle and seriously degrade mutator utilization. Ultimately, this
clustering of read barrier pauses is caused by Baker’s tospace
invariant. This invariant provides the illusion that garbage collec-
tion completes right after a flip. The more this illusion departs
from reality, the more work has to be performed by the barrier to
maintain it.

2.5 Alternatives to Baker’s Read Barrier
The clustering of read barrier faults is tightly correlated with the
tospace invariant of Baker’s algorithm. For this reason, it is widely
accepted that it is necessary to relax the invariant for adequate real-
time performance. In this regard, the most prominent extension to
Baker’s algorithm has been proposed by Brooks [3]. Brooks basi-
cally replaces Baker’s read barrier by a memory indirection and a
write barrier. For that purpose, he requires each object to contain
an additional field for an indirection pointer. Initially, this indirec-
tion pointer refers to the object itself, but as soon as the collector
evacuates an object, the indirection pointer is updated to point to
the copy in tospace.

Without a read barrier, the mutator is now able to see both
fromspace and tospace pointers. To nevertheless ensure that the
mutator always works with the proper copy of an object, any refer-



ence to an object must unconditionally follow the indirection
pointer in the object’s header. To furthermore prevent the mutator
from writing white pointers into black objects, Brooks comple-
ments the indirection with a write barrier. On a barrier fault, this
write barrier performs essentially the same operations as Baker’s
read barrier.

Compared to Baker’s read barrier, Brooks’ approach shows
three advantages that ultimately result in a better balanced distribu-
tion of synchronization pauses. First, the indirection is uncondi-
tional, and so its costs do not depend on the current state of gar-
bage collection. Second, write barrier checks are less frequent than
read barrier checks. Finally, white pointers require black objects to
actually trigger write barrier faults. While there are indeed many
white pointers at the beginning of a garbage collection cycle, there
is only a small number of black objects. Reversing the colors, the
same is true near the end of a cycle. As a consequence, write bar-
rier faults are not clustered at either end of a garbage collection
cycle. Instead, the fault rate can be expected to show a flat maxi-
mum somewhere near the middle of a cycle.

The benefit of the better balanced write barrier fault rate, how-
ever, has to be paid by a costly memory indirection. Regrettably,
the overhead of this indirection is particularly high since it needs to
be resolved on every object access. Furthermore, the code for fol-
lowing indirections involves interdependent load-load and load-
store sequences that are especially expensive in processor pipe-
lines because the latency of load instructions is usually higher than
that of standard arithmetic instructions.

Bacon et al. [2] found that the runtime overhead of a Brooks-
style memory indirection can be reduced to an average of 4% and
to a maximum of 10% by “eagerly” resolving indirections and by
aggressively applying compiler optimizations. According to their
proposal, the mutator immediately follows the indirection when-
ever it loads a pointer from memory. This way, their algorithm
effectively converts Brooks’ indirection procedure into an uncon-
ditional read barrier and at the same time restores a part of Baker’s
tospace invariant, namely that pointers to gray objects always refer
to tospace copies. As a benefit of the read barrier, the mutator no
longer has to repeatedly follow the same indirection when it deref-
erences the same pointer over and over again. Instead, the read bar-
rier resolves the indirection only once, and the loaded pointer can
subsequently be dereferenced without additional costs.

Unfortunately, Bacon et al.’s approach faces two problems.
First, the unconditional read barrier complicates garbage collection
since it does not prevent the mutator from seeing white objects.
Therefore, whenever the garbage collector evacuates an object, it
has to search through all registers and the entire program stack in
order to update all pointers to that object with a pointer to the cor-
responding tospace copy. This way, the unconditional read barrier
merely trades some increase in read barrier performance for a con-
siderable amount of additional work imposed on the collector.

The second problem is caused by compiler optimizations. To
reduce the cost of the read barrier to a tolerable degree, Bacon et
al. heavily rely on the compiler to remove part of the read barrier
code by applying optimizations such as common subexpression
elimination. As a negative side effect of these optimizations, how-
ever, regions of optimized code may no longer be interrupted by
the garbage collector. Considering time-based scheduling, this
restriction is particularly disturbing since it requires additional

synchronization to protect critical regions that have been artifi-
cially created by optimizations.

3. A HARDWARE-SUPPORTED APPROACH
Most problems associated with Baker’s algorithm in particular and
with real-time garbage collection in general are inherent to soft-
ware. In software, any kind of synchronization must be serialized
and implemented by compiler-inserted instruction sequences. This
synchronization includes read and write barriers, memory indirec-
tions, and mechanisms for incremental compaction such as the
decomposition of large objects or Steele’s extension to Baker’s
algorithm.

Hardware has the potential to efficiently synchronize the muta-
tor with garbage collection in parallel to instruction processing.
However, to thoroughly exploit this potential, a system requires the
knowledge of objects and pointers in hardware. For this reason, we
have proposed an object-based processor architecture especially
designed for hardware-supported garbage collection [9]. This
architecture completely abstracts from memory management at the
assembly language level. Thanks to this abstraction, implementa-
tions dispose of the largest possible degree of freedom to effec-
tively support garbage collection in hardware, reaching from ele-
mentary synchronization circuits to fully-featured garbage
collection in hardware.

The work we present in this paper is based on an actual imple-
mentation of our object-based processor architecture [9, 10].
While this implementation solves most of the aforementioned
problems of real-time garbage collection, we identified a serious
problem with respect to the read barrier. To start with, this section
provides an introduction to the architecture and our initial imple-
mentation. In the remaining sections, we address the identified
problem by a novel read barrier design and evaluate its benefits.

3.1 System Overview
Figure 2 shows a structural overview of our initial system. The
main processor shown in the left of the figure implements the
object-based processor architecture mentioned above. It is comple-
mented by a small, low-cost coprocessor dedicated to and special-
ized for garbage collection. For efficient synchronization, the main
processor and the garbage collection coprocessor are tightly cou-
pled and realized on the same chip. A memory controller provides
separate ports for both the main processor and the coprocessor.
Thanks to this configuration, the inherently non-local behavior of
garbage collection does not disrupt cache locality. At its external
interface, the device behaves like a standard uniprocessor and
interfaces to standard memory devices.

3.2 Main Processor
3.2.1 Architecture
Basically, the architecture of the main processor combines object-
based memory addressing with a modern RISC-style instruction
set to allow for efficient pipelined implementations. Instead of
plain memory addresses, load and store instructions use object/
index pairs to access memory. To distinguish pointers from ordi-
nary non-pointer data, the architecture strictly separates pointers
from non-pointer data. Furthermore, the architecture ensures the
integrity of pointers, i.e. pointers are always guaranteed to be
either null or to be uniquely associated with an existing object.



Objects in memory are composed of a separate pointer area and
a separate data area (Figure 3). Two attributes describe the size and
the partitioning of an object. The p-attribute specifies the number
of bytes in the pointer area, and the d-attribute specifies the num-
ber of bytes in the data area, respectively. The attributes are stored
in an attribute header that remains completely invisible to assem-
bly language programs.

Load and store instructions for pointers implicitly target an
object’s pointer area, while load and store instructions for data
implicitly target its data area. This way, each object effectively
offers two independent index spaces, each starting with zero. To
protect the integrity of objects and pointers, range checks ensure
that load and store instructions never violate the bounds of the
respective area.

The architecture has a dedicated allocate instruction for the cre-
ation of new objects. In contrast, there is no explicit mechanism for
the deletion of objects. Instead, the architecture relies on an
“invisible” garbage collector to reclaim memory behind the scenes,
thereby providing the illusion of infinite memory.

3.2.2 Implementation
Despite the architecture’s object-based nature, the implementation
is based on a straightforward pipelined RISC design that is
extended to efficiently handle objects and attributes (Figure 4).

The register set in the decode stage includes 16 pointer regis-
ters and 16 data registers. In the execute stage, the ALU performs
operations targeting data registers, the PGU (Pointer Generation
Unit) performs operations targeting pointer registers (such as allo-
cate object or copy pointer), and the AGU (Address Generation
Unit) generates addresses for the cache in the subsequent memory
stage. For simplicity, this cache is designated as a data cache even
though it contains ordinary data and pointers.

Whenever a load or store instruction dereferences a pointer to
access memory, the AGU requires the attributes of the correspond-
ing object for address generation and for range checking. For this
reason, each pointer register is supplemented by attribute registers.
Whenever a pointer register holds a non-null value, the corre-

sponding attribute registers hold the attributes of the object to
which the pointer refers. In this way, the effort for dereferencing a
pointer register is as low as address generation in conventional
architectures. Range checking does not involve any time overhead
since it occurs in parallel to address generation.

Whenever a load pointer instruction loads a non-null value
from memory, it must also load the associated attribute registers.
This is accomplished by means of an additional pipeline stage after
the usual memory stage. This stage is designated as the attribute
stage and features an attribute cache in order to allow for attribute
accesses without performance penalty in the common case.

3.3 Garbage Collection Coprocessor
The garbage collector is realized as a microcoded coprocessor. In
contrast to usual microcoded processors, it does not offer a univer-
sal set of microcoded machine instructions. Instead, it realizes the
complete garbage collection algorithm as a single microprogram.
As a benefit, the coprocessor does not require any memory band-
width for instruction fetching.

Because of the poor temporal locality of garbage collection, the
coprocessor does not profit from a general-purpose data cache and
is consequently designed without one. Typical garbage collection
tasks such as scanning and copying, however, show a fair amount
of spatial locality. To exploit this property, the coprocessor features
two burst registers that basically correspond to single cache lines.
To transfer the contents of the burst registers from and to memory,
the coprocessor takes advantage of efficient burst modes offered by
modern memory devices.

Essentially, the coprocessor realizes a Baker-style copying col-
lector with Steele’s extensions for fine-grained lazy copying.
Whenever the collector evacuates an object from fromspace to
tospace, it does not actually copy the object, but merely reserves an
empty object slot in tospace. To do so, it sets a gray-bit in the p-
attribute, saves the d-attribute to tospace, and overwrites the d-
attribute with Cheney’s forwarding pointer (Figure 5). In tospace,
it initializes the field for the p-attribute with Steele’s backlink to
the fromspace original. In this way, the garbage collector distrib-
utes the attributes between fromspace and tospace and manages to
doubly link the tospace copy to the fromspace original without
causing any additional storage overhead.

3.4 Hardware-Supported Synchronization
Our system efficiently synchronizes garbage collection and appli-
cation processing in various ways. To ensure cache coherency, the
garbage collector is able to inspect the main processor’s caches
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and to flush individual cache lines if necessary. Furthermore, a
cache line locking mechanism guarantees exclusive access to
objects. Finally, the garbage collection coprocessor may tempo-
rarily suspend the main processor to protect critical regions in the
microcode, e.g. for root set processing.

In the context of this paper, two tightly related synchronization
mechanisms are of particular interest: the mechanism for incre-
mental compaction and, as a matter of course, the read barrier.
They are subsequently described in some greater detail.

3.4.1 Incremental Compaction
Steele’s extension to Baker’s algorithm allows the collector to
copy objects incrementally. As a consequence, the mutator must
always decide whether the requested field inside a particular object
is already available in tospace. If not, the mutator has to recalculate
the field’s address, using the backlink entry found in the yet incom-
plete tospace copy.

To implement this elaborate procedure in an efficient way, the
processor treats Steele’s backlink as a third object attribute and
adds a corresponding entry to every pointer register and to every
attribute cache line. Whenever the processor is about to access a
field inside a gray object, the AGU calculates two addresses in par-
allel: a tospace address based on the actual pointer, and a from-
space address based on the backlink. In case the tospace address is
greater or equal than the garbage collector’s scan pointer (see Fig-
ure 1, lower diagram), the field has not yet been copied and the
AGU simply replaces the tospace address with the fromspace
address. The procedure just described is implemented by relatively
simple combinatorial logic that does not extend the critical path in
the execute stage. Consequently, Steele-style address generation in
hardware is as fast as standard address generation.

The only runtime cost associated with gray objects occurs if a
pointer to a gray object is to be loaded and, at the same time,
causes an attribute cache miss. In this case, since the p-attribute of
a gray object resides in fromspace and its d-attribute in tospace,
the attribute cache requires two separate memory accesses to
resolve the cache miss (see Figure 5). Since the cache implicitly
loads the backlink during the first memory access, maintaining the
backlink attribute in the cache and the registers does not cause any
additional runtime overhead.

3.4.2 Read Barrier
The knowledge of pointers in hardware enables the processor to
realize the read barrier as simple as by two comparators that check
whether a loaded pointer refers to fromspace. If so, the processor
suspends the corresponding instruction and signals an interrupt to
the garbage collection coprocessor. Thereupon, the coprocessor
invokes the read barrier fault handler in its microcode. As soon as
the handler completes, the main processor restarts the suspended
load pointer instruction. This time, the instruction loads a tospace
pointer and passes the read barrier check.

To realize a read barrier in the way just described, a standard
processor would have to delay each load pointer instruction until
the read barrier check completes. Our processor, however, fully
pipelines the load pointer instruction by means of the attribute
stage after the usual memory stage. As a benefit, the read barrier is
able to check loaded pointers while the same pointer simulta-
neously accesses the attribute cache (see Figure 4). In this way, the
processor performs the read barrier check completely in parallel to
standard instruction execution.

Whenever the read barrier detects a fromspace pointer, the cor-
responding load pointer instruction is effectively delayed until the
garbage collector’s fault handler completes. Thanks to Steele’s
extension to Baker’s algorithm, the handler has to perform a
strictly bounded number of basic operations only. In the worst
case, it evacuates an object, which comprises the following basic
operations: (1) load the pointer that triggered the read barrier, (2)
load the attributes of the corresponding object, (3) advance free,
(4) overwrite the fromspace attributes with p and the forwarding
pointer, (5) initialize the tospace attributes with the backlink and d,
and (6) overwrite the initial pointer with the previous value of free,
totalling two memory reads and three memory writes. If the object
has already been evacuated, the procedure includes two memory
reads and one memory write.

The hardware read barrier supervises any pointer loaded from
memory, including those in program stacks. The performance pen-
alty caused by this globalization is only small. Because of the high
locality of stack accesses, most pointers read from the stack are
likely to have only recently been written, and so the read barrier
will not fail in the majority of these cases. Thanks to the read bar-
rier globalization, though, the garbage collector is now able to pro-
cess program stacks in an incremental way.

3.5 Summary
The system described so far solves all problems with respect to
real-time performance addressed in section 2.3. First, it performs
garbage collection truly concurrently with application processing
and thereby eliminates the need to interleave the collector with the
mutator on the same processor. Second, the globalization of the
read barrier enables the garbage collector to scan program stacks
in an incremental way. Third and finally, the hardware implemen-
tation of Steele’s lazy copying permits efficient incremental com-
paction. Thanks to all these fine-grained synchronization
mechanisms, the system bounds the duration of any garbage col-
lection related pause to a maximum of 500 clock cycles [10].

Aside from these real-time features, the system shows addi-
tional qualities with respect to modularity and robustness. The
abstraction of garbage collection at the assembly language level
renders both compilers and compiled programs completely inde-

Figure 5:  Object states during garbage collection
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pendent of a particular garbage collection method. Even more, gar-
bage collection does not depend on any kind of compiler support
whatsoever, be it for pointer identification or for synchronization.
Finally, the system introduces the robustness stemming from gar-
bage collection and fine-grained memory protection at the machine
code level.

4. THE COST OF THE READ BARRIER
In the system described in the last section, by far the most frequent
synchronization pauses are caused by read barrier faults. All other
pauses are extremely rare and can effectively be ignored [10]. For
this reason, we subsequently focus on read barrier faults.

Thanks to hardware support for the read barrier and incremen-
tal copying, the penalty incurred by a single read barrier fault is
rather low. As stated in section 2.3, however, it is not adequate to
exclusively consider the length of pauses to evaluate real-time per-
formance. Therefore, we will now study the distribution of read
barrier faults over time in order to determine their actual influence
on mutator progress and utilization.

4.1 Prototype and Measurement Platform
For our performance measurements, we are using an FPGA-based
prototype of the system described in Section 3. The main processor
is statically scheduled and issues up to three instructions in a clock
cycle. It has an elaborate branch prediction unit, an 8K instruction
cache, an 8K data cache, and an attribute cache with 256 entries.
The garbage collection coprocessor is integrated on the same
device and occupies less than 20% of the chip area. Main memory
is composed of standard SDRAM modules. Processor, SDRAM
and various standard peripherals are synchronously operated at
25MHz. On the software side, a static Java compiler translates
standard Java bytecode to the processor’s native machine code.
The compiler includes a code scheduler that rearranges instruc-
tions in order to take advantage of the processor’s parallel execu-
tion units and to hide instruction latencies as far as possible.

For accurate measurements, we must be able to observe the
state of various signals inside the processor at every single clock
cycle. To accomplish this, we integrated a measurement port into
the processor that routes 32 arbitrary internal signals to a dedicated
Gigabit Ethernet interface. The resulting data stream of 800Mbit/s
is written to three hard disks in parallel and analyzed offline.

4.2 Distribution of Read Barrier Pause Lengths
To evaluate the cost of a single read barrier fault, we first deter-
mine the length of all pauses caused by the fault handler. In doing
so, we start to measure from the moment that a load pointer
instruction triggers the read barrier until the moment that the

restarted instruction completes. The measured durations include a
pipeline flush (5 cycles), a potential attribute cache miss, and pen-
alties possibly incurred by other instructions that are executed in
the pipeline at the same time. For this reason, the measurements
are somewhat pessimistic, and the actual costs are slightly smaller.

Figure 6 shows the distribution of pause lengths that we
obtained from the “database” benchmark (SPEC JVM98). With
respect to overall read barrier behavior, this benchmark represents
the worst case of all applications we have examined.

The distribution has a mean value of 111.6 clock cycles, but
shows a wide variation from approx. 60 to 300 clock cycles. This
high degree of variation has several causes. First, the handler must
distinguish two separate cases and either evacuate an object or read
a forwarding pointer. Second, the coprocessor protects small criti-
cal regions of uninterruptible code to avoid access conflicts to
shared resources. Third, any memory access must first inspect the
main processor’s caches and potentially wait until the processor
completes a cache line flush. Fourth and finally, memory access
times vary because the memory controller has to insert refresh
cycles on a regular basis.

4.3 Influence on Minimum Mutator Utilization
As mentioned before, while it is absolutely necessary to bound the
duration of all pauses, it is even more important to examine their
distribution over time. To do so, we first divide time into units of
500 clock cycles each. This granularity seems appropriate since
the duration of the longest synchronization pauses is in the same
order of magnitude. Then, we measure the number of read barrier
stall cycles within each time unit.

The results from running our worst-case benchmark “database”
are shown in Figure 7. These results are even worse than we antic-
ipated. Severe bursts of read barrier faults stall the processor pipe-
line for up to 99.6% within some time units. Even more serious,
units with a high percentage of stalls are extremely clustered in
time. Examining a sliding window of 5ms (i.e. all possible inter-
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Figure 6:  Distribution of pause lengths –
number vs. duration in clock cycles

(microcoded fault handler, benchmark “database”)

Figure 7:  Percentage of read barrier stall cycles within intervals of 500 clock cycles
(microcoded fault handler, benchmark “database”, first 18 seconds)
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vals comprising 250 time units or 125000 clock cycles), we found
that the maximum percentage of stall cycles per window still
amounts to 91.7%, which corresponds to a minimum mutator utili-
zation of 8.3% at a time quantum of 5ms.

5. A TRUE HARDWARE READ BARRIER
Although the last section covers a worst-case scenario, the results
are disappointing. To improve the situation, the obvious alternative
is to replace Baker’s read barrier by a variant of Brooks-style indi-
rections and write barriers. However, the resulting lack of the
tospace invariant considerably complicates garbage collection and
will raise the cost and complexity of a hardware-based implemen-
tation. For this reason, we propose an entirely opposed approach.
Our basic idea is to live with the clustering of read barrier faults
and to instead increase the efficiency of the fault handler as much
as possible.

Analyzing the original read barrier, we found that most of the
overhead is caused by the fact that the main processor and the gar-
bage collection coprocessor expensively communicate via main
memory. First, the main processor’s caches flush the respective
pointer and attributes to memory. Next, they are reloaded by the
coprocessor, processed, and stored back to memory. Eventually,
the processor restarts the instruction and loads the pointer and
attributes back to its caches. Ultimately, this overhead is nothing
but a consequence of a locality issue: A pointer that triggers the
read barrier, along with its attributes, is local to the mutator and not
local to the garbage collector.

To exploit this insight, we decided to completely move the read
barrier fault handler from the garbage collection coprocessor to the

main processor and to directly integrate it into the pipeline. If the
required pointer and attributes are already available in the caches,
all that the fault handler actually will have to do is to check the
color of the object, to advance free, and to store the new pointer
and, in case of an evacuation, two new sets of attributes. This pro-
cedure is so simple that it is possible to implement the entire fault
handler directly in hardware.

Figure 8 illustrates the integration of the read barrier fault han-
dler into the pipeline. The read barrier, instead of interrupting the
garbage collection coprocessor, now activates the read barrier fault
handler circuit. Thereupon, the handler locks the corresponding
cache lines in order to prevent the garbage collector from doing the
same. In case the fault handler and the collector lock the same
cache line at the same time, the coprocessor withdraws its lock and
gives way to the fault handler. Next, the handler reads and updates
the garbage collector’s free pointer. A simple locking mechanism
ensures that this happens in a consistent way. Finally, the handler
writes the updated pointer to the data cache and, if necessary, two
sets of attributes to the attribute cache. In doing so, it can simulta-
neously write to both caches. Since a read barrier fault flushes the
pipeline, the fault handler has exclusive access to the caches. In the
way just described, the fault handler efficiently profits from the
processor’s caches and avoids any direct memory access.

A somewhat subtle side effect of handling read barrier faults in
the processor pipeline itself is that the attribute cache now has to
deal with fromspace pointers. While the original read barrier sup-
presses fromspace attribute cache misses, the hardware fault han-
dler requires the cache to resolve them since it depends on the
attributes and the forwarding pointer in the fromspace object.
Hence, the attribute cache now contains both tospace and from-
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space records, whereby the latter actually “misuse” a cache line’s
backlink entry for the forwarding pointer.

6. MEASUREMENT RESULTS
To quantify the advantage of the new read barrier design, we repeat
the measurements described in Sections 4.2 and 4.3, again using
our worst case application “database” as the first benchmark.

The new distribution of pause lengths is shown in Figure 9.
Pauses now vary from approx. 5 to 50 clock cycles with a mean
value of 19.3 clock cycles only. Compared to the initial read bar-
rier handler, the pauses are a significant factor of almost 6 shorter.

Considering this substantial reduction, it is interesting to see
how this advantage translates to the distribution of read barrier stall
cycles over time. The result for “database” is shown in Figure 10.
As a first observation, the shape of the graph is very similar to the
graph obtained with the initial microcoded handler (Figure 7). The

height of the bursts, however, is much lower. Regarding a time
quantum of 5ms, the worst case percentage of read barrier stalls
drops from 91.7% to 41.9%, which corresponds to an increase in
minimum mutator utilization by a factor of 7.

To confirm these initial findings, we have repeated the mea-
surements for a total of seven different applications that we suc-
cessfully compiled for our prototype. To assess the gain in mini-
mum mutator utilization for various time quantums, we
determined the worst case percentage of stall cycles for various
time intervals (Table 1). Assuming a time quantum of 1ms, for
example, the minimum mutator utilization with the original fault
handler is less than 10% in three of the cases. In contrast, the hard-
ware fault handler always achieves more than 55%. Consequently,
a hard real-time system with response times in the order of 1ms
must respect a worst case overhead of a factor of 10 with the origi-
nal handler, but only a factor of 2 with the hardware handler.

For reference, we have assembled additional measurement data
in the Appendix, including some general benchmark characteris-
tics and a comparison of all distribution graphs for all benchmarks.

It should be noted that, as before, all measurements are conser-
vatively pessimistic. Since the pipeline processes many instruc-
tions when a read barrier fault occurs, it is not always possible to
tell whether a particular stall cycle is actually caused by the fault
handler itself. If, for example, a load pointer instruction is immedi-
ately followed by a load instruction that causes a data cache miss,
the corresponding pipeline stall, although unrelated, will affect the
duration of the measured pause. Compared to the initial handler,
the resulting pessimism is even larger for the hardware handler
since the overall duration of pauses is much shorter.

Table 1:  Worst case percentage of read barrier stall cycles –
microcoded handler (mc) vs. hardware handler (hw) for different time intervals

compress cup database javac javacc jflex jlisp

Basic time unit of
500 clock cycles (20 ms)

mc
hw

91.0
23.2

99.6
55.2

99.6
54.6

99.8
69.0

99.6
46.8

99.6
67.4

99.6
61.2

Sliding window over
10 time units (200 ms)

mc
hw

32.1
05.2

89.9
44.9

93.8
45.6

98.6
61.1

80.7
22.4

93.9
40.8

96.6
25.6

Sliding window over
50 time units (1 ms)

mc
hw

09.1
01.3

84.2
35.4

92.8
43.2

93.6
44.9

75.1
16.0

92.1
20.6

79.4
13.3

Sliding window over
250 time units (5 ms)

mc
hw

02.6
00.4

82.9
30.6

91.7
41.9

77.5
16.2

61.1
09.7

43.4
07.8

38.2
05.5

Sliding window over
1250 time units (25 ms)

mc
hw

00.6
00.1

82.3
28.4

88.6
37.9

50.3
13.2

19.8
02.6

16.6
02.3

08.6
01.6
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Figure 9:  Distribution of pause lengths –
number vs. duration in clock cycles

(hardware fault handler, benchmark “database”)

Figure 10:  Percentage of read barrier stall cycles within intervals of 500 clock cycles
(hardware fault handler, benchmark “database”, first 18 seconds)
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7. RELATED ARCHITECTURES
Hardware support for read and write barriers was introduced by
language-directed architectures in the 1980s. Aside from typical
CISC architectures like the Symbolics 3600 [11], examples also
include pipelined RISC designs like SOAR [15] and SPUR [7]. All
these architectures include read or write barriers in hardware, but
the corresponding exception handlers are realized in software. By
the end of the 1980s language-directed architectures were super-
seded by less specialized commodity architectures that offered bet-
ter performance at lower cost.

In the 1990s, a number of researchers proposed active memory
modules that were designed to work with standard microproces-
sors. The best known of these modules is the garbage-collected
memory module (GCMM) of Nilsen and Schmidt [13]. Their mod-
ule accommodates the actual memory devices, a private micropro-
cessor, and a number of custom circuits, including two elaborate
CAM-like devices. An arbiter within the module manages accesses
from the external processor and realizes a read barrier as well as
Steele-style incremental compaction. Unfortunately, this arbiter is
merely drafted in the form of abstract flowcharts [12], and the sys-
tem was never realized as a prototype. Also, the hardware costs for
the memory module are prohibitive, particularly for most embed-
ded applications. Regarding performance, the module’s data
throughput is considerably inferior to that of standard memory,
especially when compared with modern, burst-oriented devices.
Furthermore a significant overhead is caused by communicating
the location of pointers from the main processor to the module,
most notably regarding stack operations. Ultimately, most of these
problems are not related to garbage collection itself, but result
from the loose coupling between main processor and module.

Despite the experiences in the 1980s, language-directed archi-
tectures nowadays experience a resurrection in the form of Java
processors for embedded applications. However, these architec-
tures concentrate on bytecode execution and offer marginal to no
support for real-time garbage collection.

Regarding this condensed overview, the architecture we pro-
pose is the first universal processor architecture with a RISC-style
instruction set that thoroughly exploits the potential of language-
independent hardware support for garbage collection.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a novel hardware read barrier that is
directly integrated into a processor pipeline. In contrast to previous
work, our read barrier handles read barrier faults completely in
hardware and completes in less than 20 clock cycles on average.
Consequently, the cost of a read barrier fault descends to the same
order of magnitude as that of an ordinary cache miss.

Despite common belief, we have shown that it is possible to
maintain the simplicity and elegance of Baker’s original tospace
invariant without seriously degrading mutator utilization. For a
time quantum as short as 1ms or 25000 clock cycles, all the appli-
cations we have examined show a minimum mutator utilization of
more than 55%. Thanks to this property, it is feasible to estimate
worst case execution times for hard real-time applications.

Our current implementation within a statically scheduled in-
order processor is very well suited for low-cost embedded systems.
In more elaborate out-of-order processors, however, it is not rea-
sonable to stall the processor on a cache miss or to flush the pro-

cessor pipeline on a read barrier fault. Notwithstanding, we expect
that our approach will fit well or even better into the concept of
out-of-order processors. Since these processors completely decou-
ple instruction issue from instruction completion, it will be possi-
ble to encapsulate all garbage collection related synchronization
into the load/store unit. This way, a read barrier fault merely looks
like a slow memory access and will not affect the execution of
unrelated instructions. To exploit these opportunities, we are cur-
rently investigating an out-of-order implementation of our proces-
sor architecture.
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compress
meanmc = 104.5 – meanhw = 14.8

cup
meanmc = 110.2 – meanhw = 21.3

database
meanmc = 111.6 – meanhw = 19.3

javac
meanmc = 112.1 – meanhw = 18.1

APPENDICES

A. General benchmark characteristics

compress cup database javac javacc jflex jlisp

Semispace size
absolute 10M 19M 16M 8.25M 5M 3.5M 192K
relative ~140% ~220% ~160% ~150% ~260% ~170% ~150%

Total program runtime
mc 47.7s 53.0s 262.7s 39.2s 20.3s 25.6s 61.7s
hw 47.5s 52.4s 261.3s 37.1s 20.2s 25.6s 61.2s

Number of read
barrier faults

mc 215 174,168 0,930,872 168,260 17,530 9,624 112,936
hw 207 207,631 1,118,045 191,296 17,401 9,755 123,524

Average percentage of
read barrier stall cycles

mc 0.00 1.44 1.57 1.91 0.40 0.20 0.93
hw 0.00 0.32 0.31 0.35 0.06 0.02 0.11

Programs were run in “typical minimum” memory configurations that (a) avoid mutator starvation and (b) keep the collector busy.
Semispace sizes are given both absolute and relative to the smallest possible size required for stop-the-world collection.
(mc: microcoded read barrier fault handler; hw: hardware read barrier fault handler)

B. Distribution of pause lengths (number vs. duration in clock cycles)

0

10

20

30

0 50 100 150 200 250 300
0

50

100

m
c handler

hw
 handler

0

1000

2000

3000

0 50 100 150 200 250 300
0

20000

40000

60000

m
c handler

hw
 handler

0

20000

40000

60000

0 50 100 150 200 250 300
0

100000

200000

300000

400000

m
c handler

hw
 handler

0

1000

2000

3000

4000

0 50 100 150 200 250 300
0

10000

20000

30000

m
c handler

hw
 handler



javacc
meanmc = 117.2 – meanhw = 19.4

jflex
meanmc = 130.8 – meanhw = 17.6

jlisp
meanmc = 128.4 – meanhw = 14.9
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C. Percentage of read barrier stalls over time (within intervals of 500 clock cycles)
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