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Abstract

Garbage collection has become a major cornerstone of almost
any modern object-oriented programming language, as it consid-
erably increases programmer productivity and software quality.
Along with the success of Java, the benefits of garbage collection
advance to the area of embedded and real-time systems, thus pos-
ing new challenges to processor architects.
This paper presents a novel RISC processor architecture that
introduces the robustness stemming from garbage collection at
the machine-code level. This is accomplished by an object-based
architecture that maintains the invariant that (1) every pointer
can be exactly identified, and (2) every pointer value is either null
or uniquely associated with an existing object. The basic idea for
ensuring this is to strictly separate pointers from ordinary data,
thereby allowing for tag-free pointer identification.
The architecture provides the basis for garbage collection in
hardware that closely cooperates with the processor. The advan-
tages of this configuration include low garbage collection over-
head, low-cost synchronization of collector and application
program, high robustness and hard real-time capabilities.
A pipelined RISC processor conforming to the proposed architec-
ture as well as a micro-coded hardware garbage collector have
been realized on a single programmable logic device. A native
Java bytecode compiler developed for the architecture facilitates
the execution of large existing programs. Performance measure-
ments on the prototype show that, despite the required synchroni-
zation, the real-time hardware garbage collector is significantly
more efficient than a non-incremental “stop-the-world” software
garbage collector.

1 Introduction

Today, automatic dynamic memory management, also known as
garbage collection, is widely accepted as an indispensable
method to control software complexity. For this reason, most
object-oriented languages such as Smalltalk, Eiffel and Java are
supported by garbage collection. There are, however, application
areas such as embedded, real-time, and safety-critical systems for
which the benefits of garbage collection are still considered an
unaffordable luxury.

In this section, a summary of the most commonly used gar-
bage collection methods is given. It concentrates on the problems
of contemporary software-based solutions in order to motivate
the architectural support for garbage collection that is presented
in this paper.

Basic Algorithms

The basic algorithms for garbage collection are reference count-
ing, copying and mark-sweep collection [9]. Reference counting
methods maintain a counter for each object that holds the number
of references pointing to the object. Objects with a counter of
zero can be reclaimed. Reference counting, however, fails to free
cyclic garbage. To avoid the cost of updating reference counters
and to overcome the problem with cycles, mark-sweep and copy-
ing algorithms, also referred to as tracing algorithms, are applied.
They trace memory starting with a set of roots, usually consisting
of processor registers and the program stack. While mark-sweep
collectors first mark all reachable objects (mark phase) and then
reclaim all unmarked objects (sweep phase), copying collectors
divide the heap into two areas called semispaces. Only one semi-
space is used at any given time. During collection, all reachable
objects are copied from one semispace to the other, thereby
inherently compacting the heap. Although copying collectors
need twice as much memory as their mark-sweep counterparts,
they are particularly attractive since the cost of garbage collection
is proportional to the amount of reachable objects rather than the
size of the entire heap.

Traditional implementations of these algorithms suspend
application processing for the entire duration of a garbage collec-
tion cycle. They usually cause long and unpredictable pause
times and are not applicable to interactive systems or real-time
environments.

Incremental Methods

In order to improve the interactive response of garbage-collected
systems, incremental garbage collection techniques are applied.
They allow application processing to continue while garbage col-
lection is performed. In this context, the application program is
usually referred to as the “mutator” since it changes the heap
behind the collector’s back. For illustration purposes, incremental
garbage collection is often described by Dijkstra’s tricolor
abstraction [4]: Black indicates that the collector has finished
with an object for the current garbage collection cycle, grey indi-
cates that the collector hasn’t finished with the object or, for some
reason, has to visit the object again, and white indicates that the
object has not been visited by the collector. At the end of a gar-
bage collection cycle, white objects are reclaimed. Problems may
arise if the mutator writes a pointer to a white object into a black
object. If the original pointer to the white object is destroyed and
no further pointer to the white object exists, the object will be
illegally discarded at the end of the garbage collection cycle.
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Usually, either read or write barrier methods are employed to
prevent the mutator from disrupting the garbage collector. Read
barriers ensure that the mutator never sees a white object. When-
ever a pointer to a white object is accessed, the object is immedi-
ately visited by the collector. In contrast, write barriers make
sure that black objects turn grey as soon as a pointer to a white
object is installed. In order to realize read or write barriers, the
compiler must emit a few instructions before each pointer load or
before each pointer store, respectively.

Many incremental garbage collection algorithms are
described as real-time because garbage collection pauses are, in
the majority of cases, too short to be noticed by a user. Hard real-
time systems, however, require correct responses to environmen-
tal changes within a specified amount of time. As software-based
incremental algorithms usually have to rely on some sort of
atomic action such as scanning the complete root set or process-
ing an entire object, they are not applicable to hard real-time
environments. Although there are software-based garbage col-
lected systems that claim to satisfy hard real-time requirements,
these implementations suffer considerable execution time over-
head (e.g. due to expensive object access, write barriers, synchro-
nization points, root set copies) as well as memory space over-
head (e.g. due to auxiliary data structures, fragmentation) [15].

Pointer Finding

All garbage collection methods face the problem of “pointer find-
ing” or “pointer identification”. If pointers cannot be unambigu-
ously distinguished from non-pointers, only conservative garbage
collection may be employed. This means that any bit pattern that
looks like a pointer has to be considered a pointer in order to
avoid freeing memory that is still in use. The conservative
approach, however, suffers from a number of drawbacks. A value
mistakenly identified as a pointer may refer to an object that
recursively could contain pointers to other objects, thus keeping
the collector from freeing unpredictable amounts of memory.
Furthermore, a conservative collector may not move objects as
this necessitates the update of pointers, and updating some data
erroneously taken as a pointer can cause disastrous effects. For
this reason, conservatively collected heaps are subject to frag-
mentation as long as no costly measures are taken (e.g. the use of
handles), and copying collectors or other compacting collectors
such as mark-sweep-compact cannot be used unless exact infor-
mation about the location of each pointer is available.

In order to realize exact (i.e. non-conservative) garbage col-
lection (also known as precise or accurate garbage collection),
many implementations spend a good deal of effort in searching
and exactly identifying pointers. In the case of many object-ori-
ented languages, pointers in heap objects can be identified by
means of type descriptors that are usually available in each object
as they are needed for dynamic binding and runtime type checks.
However, locating pointers in the program stack and in processor
registers is more difficult, particularly in the context of optimiz-
ing compilers. Although it is possible to maintain maps describ-
ing which stack locations or processor registers contain pointers,
the cost of updating such maps at runtime is generally considered
prohibitively high. For this reason, most software-based solutions
rely on the compiler to emit tables describing all pointer locations

in the stack and in registers. A set of tables is constructed for each
program point where a collection might occur (gc-points). Exam-
ples for this approach can be found in [5] for a Modula-3 com-
piler and in [1] for a Java Virtual Machine.

Software-based methods for exact pointer identification, how-
ever, share a number of disadvantages. First of all, the tables
needed to describe all pointer locations at all gc-points usually
result in considerable code size blow-up unless the tables are
compressed [1, 5]. Furthermore, multi-threaded and real-time
environments must ensure that suspended threads reach the next
gc-point within a bounded amount of time. Finally, these meth-
ods depend heavily on compiler support and are not generally
applicable.

The rest of the paper is organized as follows. Section 2 gives
an overview of related architectures. Section 3 defines a novel
processor architecture, and Section 4 outlines an efficient imple-
mentation thereof. In Section 5, the implementation is enhanced
by a hardware garbage collector. Finally, Section 6 presents
experimental results, and Section 7 provides a conclusion.

2 Related Work

This section highlights representative examples of architectures
that provide support for exact pointer identification, garbage col-
lection, or both.

Known since 1966, capability-based architectures use capabil-
ities instead of ordinary pointers to refer to memory. Examples
for capability-based computers include the Plessey System 250,
the IBM System/38, the SWARD machine and the Intel iAPX
432 [10, 12]. Capabilities are unique object identifiers that pro-
vide a single mechanism to address both main memory and sec-
ondary storage. A capability does not contain the physical
address of an object. Instead, it is used to locate a descriptor that
specifies the physical location and the size of the object. Capabil-
ities are either tagged or kept separate from ordinary data in order
to guarantee that they are never modified by users. In this way,
capability-based systems provided for “exact capability identifi-
cation” long before garbage collection became a major topic of
interest.

The Intel iAPX 432 [10] is an interesting example for a capa-
bility-based processor. Capabilities are associated with objects in
a two-step mapping process. An object consists of two parts: a
data part for scalars and an access part for capabilities. For each
object, there is a unique entry in an object table that describes the
location, the size, and the state of the object. Due to its architec-
tural complexity, however, the iAPX 432 suffered from very poor
performance [3] and has never been a commercial success.

During the eighties, various architectures in support of partic-
ular programming languages have evolved. Examples include the
SOAR (Smalltalk On A RISC) [16], SPUR (Symbolic Processing
Using RISCs) [8], and Symbolics [11] architectures. They distin-
guish different types of data (including pointers) by augmenting
every memory word with a tag field and provide hardware sup-
port for read or write barriers [19].

More recently, Williams and Wolczko [17] suggest an object-
based memory architecture for Smalltalk. Similar to capability-
based systems, object identifiers do not directly refer to the
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object’s address in memory but are used to index a multi-level
object table. Object identifiers are distinguished from ordinary
data by means of tags.

Gehringer and Chang [6] propose a cache coprocessor for
conventional architectures that is intended to avoid unnecessary
memory traffic. The coprocessor allocates objects in the cache
without fetching garbage from memory and removes dead objects
from the cache before they are ever written to memory. Since
pointers are not differentiated from ordinary data, a conservative
collection algorithm is applied.

Nilsen and Schmidt describe a garbage-collected memory
module for hard real-time applications in a series of publications
[e. g. 13, 14]. It is mainly composed of two memory banks and a
local processor dedicated to garbage collection. Memory words
are tagged in order to provide for pointer identification. Every
memory bank is supported by a so-called object space manager
(OSM) that is used to associate each memory access with the
start address of the corresponding object. The start address is
required to access the object header that contains vital informa-
tion such as the size and the state of the object. Due to its com-
plexity, the OSM has to be realized as a separate ASIC and is
expected to consume almost as much chip area as the actual
memory device itself. In respect of real-time capabilities, the
authors report worst-case latencies for all memory load, store,
and allocate operations in the order of 1 µs, with rare delays of
typically 500 µs at the start of a garbage collection cycle.

Wise et al. [18] present a memory module realizing a hard-
ware reference-counting heap. The module consists of the actual
memory, a reference count memory, and a tag memory. The mod-
ule automatically maintains a reference counter for each object.
In order to reclaim cyclic data structures, the reference count col-
lector is regularly assisted by a mark-sweep collector.

To conclude this section, the following observations should be
noted: First, many architectures are dedicated to special program-
ming languages. Second, with the exception of the expensive gar-
bage-collected memory module, none of the described architec-
tures targets hard real-time applications. Third, apart from early
capability-based computers, all architectures for exact garbage
collection use tags to identify pointers.

3 Architecture Definition

3.1 Design Goals

The architecture defined in this section is motivated by the fol-
lowing design goals: (1) ensure exact pointers without tags, (2)
apply a general-purpose, RISC-style instruction set architecture
for efficient implementation, and (3) do not rely on indivisible
operations with execution times exceeding a few clock cycles.

3.2 Definition of Terms

Throughout the rest of this paper, the following definition of
terms is presumed. word: a unit of data that can be moved to and
from memory by a single processor instruction; object: a com-
pound of memory words, whereby every word exclusively
belongs to a single object; pointer: a word used to refer to an
object; null: a unique pointer value used to refer to no object. The
term “reference” is used as a synonym for pointer.

3.3 System Invariant

In order to ensure exact pointers, the architecture maintains the
system invariant detailed below:

§1 every memory word or register is identified to be a pointer or
not

§2 each pointer value is either null or uniquely associated with
an existing object

3.4 Register Model

The architecture provides separate data register and pointer regis-
ter sets (Figure 1). Data registers are used as general-purpose reg-
isters whereas pointer registers are exclusively used for referring
to objects in memory. In order to comply with the system invari-
ant, it must not be possible to write arbitrary values to pointer
registers or to perform arithmetic operations on pointer registers.

3.5 Object Model

The memory model of the processor architecture is object-based.
An object is composed of a separate data area and a separate
pointer area (Figure 2). The number of data words in the data area
is referred to as the object’s δ-attribute, the number of pointers in
the pointer area as the object’s π-attribute, respectively. The size
of an object as described by the attributes is determined when the
object is created and cannot be altered thereafter.

3.6 Instruction Set

The architecture definition comprises pointer-related instructions
only, including load and store instructions. The design of other
instructions such as for arithmetic or program control remains the
choice of a particular implementation.

p(Np–1)

data register
Nd number of data registers

Figure 1 Register model

Pointer Register Set

p2

p1

p0 = null

d(Nd–1)

d2

d1

d0 = zero

Data Register Set

pointer register
Np number of pointer registers

0 π–11 2 0 δ–11 2

pointer area data area

pointer word data word

π number of pointer words in the pointer area (π-attribute), π ≥ 0
δ number of data words in the data area (δ-attribute), δ ≥ 0

Figure 2 Object model
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Allocate Object

Dynamic memory management is entirely abstracted by the pro-
cessor architecture. A special allocate object instruction is used
for creating a new object and for associating an object reference
with it. The allocate instruction takes the values of the π- and the
δ-attribute for the new object as arguments and returns the refer-
ence to the newly created object in a pointer register. Every
pointer word in the pointer area of the created object is initialized
with null before the object reference becomes visible to the pro-
gram.

There is no such thing as an instruction for the deletion of
objects. The manual deletion of objects unavoidably leads to the
“dangling reference” problem, thus violating the system invari-
ant. For this reason, the proposed architecture relies on garbage
collection at the processor level.

Load and Store

Load and store instructions are used to access words inside an
object. Different load and store instructions for accessing pointer
and data words are provided: the load data and store data instruc-
tions exclusively move data words between an object’s data area
and data registers, while the load pointer and store pointer
instructions exclusively move pointers between an object’s
pointer area and pointer registers, respectively.

Load and store instructions identify the memory word to be
accessed by means of a pointer register holding the reference to
the object and a positive integer index. To compute this index, an
implementation may provide different “indexing modes” (the
equivalent to “addressing modes” on conventional architectures)
using constant offsets, data registers, displacements, and scale
factors.

Accessing memory words outside the data or pointer area of
an object can cause unpredictable effects. Depending on the
object layout, it may be possible to access pointers by means of
out-of-range data load instructions or vice versa. For this reason,
the architecture has to perform bounds checks. If a bounds check
fails, the load or store instruction is not permitted to complete,
and an index out of bounds exception is raised. For similar rea-
sons, the attempt to access memory by means of a pointer register
holding null is cancelled by a null pointer exception.

Query Object Attributes

The attributes of an object can be queried by means of two query
attribute instructions.

Copy and Compare Pointers

In contrast to the multitude of register-to-register instructions that
may be provided for operations on data registers, the architecture
defines a tightly restricted set of two instructions for pointer-
related register-to-register operations: The copy pointer instruc-
tion copies the contents of a pointer register to another pointer
register, while the compare pointers instruction checks whether
two pointer registers refer to the same object.

3.7 Program Stack

Because of the unstructured and highly dynamic nature of pro-
gram stacks, they traditionally constitute the greatest challenge
with respect to pointer identification. For this reason, the realiza-
tion of program stacks within the scope of the proposed architec-
ture deserves special attention.

The stack object, like every object, is composed of a data area
and a pointer area and can thus be thought of as two separate
stacks (Figure 3). A pointer register is reserved to hold the refer-
ence to the stack object. In each of the two areas, a stack index is
used to divide the respective area into the actual stack and an
unoccupied area, whereby the stack index refers to the first unoc-
cupied location. The two stack indices are designated as data
stack index (dsix) and pointer stack index (psix), and each is held
in a data register reserved for this purpose.

However, if the stack object is treated like an ordinary object,
the system cannot differentiate whether a pointer belongs to the
actual pointer stack or to the unoccupied pointer area. Since
every word in the pointer stack area is identified as a pointer,
there may be many pointers within the unoccupied area that point
to objects that are no longer needed. Though this constitutes no
threat to the system invariant, a garbage collector will not be able
to reclaim these objects because they are still accessible, resulting
in unpredictable amounts of floating garbage.

One possible solution to this problem consists in explicitly
storing null to the appropriate stack location whenever a pointer
is removed from the stack. However, this approach is not particu-
larly attractive because of the related overhead, especially if

0 π–11 2 0 δ–11 2

pointer stack area data stack area

stack attributes
Π max. number of pointer words in pointer stack area
∆ max. number of data words in data stack area
π number of occupied words in pointer stack area, 0 ≤ π ≤ Π
δ number of occupied words in data stack area, 0 ≤ δ ≤ ∆

Figure 3 Stack object

π Π–1 δ ∆–1

psix

stack pointer
stack reserved pointer register, e.g. p1 = stack

stack indices
psix pointer stack index, reserved data register, e.g. d1 = psix
dsix data stack index, reserved data register, e.g. d2 = dsix

? ? ? ? ? ?
pointer word

data word

undefined word?

dsixstack
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many pointers are to be removed from the stack at the same time
(e.g. the deallocation of a stack frame at the end of a subroutine).

Due to its constant size, an ordinary object is actually not ade-
quate to realize a program stack. As a better approach, the archi-
tecture takes the dynamic size of a stack into account. This can be
accomplished by describing the program stack object by two
pairs of attributes, one pair (π, δ) for the actual stack size and a
second pair (Π, ∆) for the maximum stack size. In this way, the
π-attribute is equivalent to the value of psix, and the δ-attribute is
equivalent to the value of dsix. The stack attributes Π and ∆ are
held in system registers that are not visible to user programs. In
respect to pointer identification and the system invariant, only
pointers at indices below π will be considered pointers.

Memory locations inside the stack are accessed by ordinary
load and store instructions. Values can be removed from a stack
by decreasing the value of the respective stack index by means of
ordinary arithmetic instructions. There is, however, a problem
related to pushing pointer values onto the pointer stack. If it is
permitted to store the pointer before the pointer stack index is
incremented, §1 of the system invariant will be offended in
between the two instructions, as the pointer just stored is not
identified as a pointer. If, on the other hand, the pointer stack
index is incremented prior to storing the pointer, §2 will be
offended in between the two instructions, since a word identified
as a pointer does not contain a valid pointer. This problem is
solved by providing a pointer store instruction (or, alternatively,
an indexing mode that can be used with a pointer store instruc-
tion) that both stores a pointer at the first unoccupied pointer
stack location and increments the pointer stack index in an indi-
visible fashion (push pointer). Furthermore, this must be the only
instruction permitted to increment the pointer stack index. Any
attempt to increment the pointer stack index by means of other
instructions results in a psix increment exception.

3.8 Special Objects

Constant Objects

Assuming the instruction set introduced so far, the only way to
access memory is through pointers, and the only instruction to
actually create new pointers is the allocate instruction. However,
it should also be possible to access constant data that exists as
part of the program code before a program is started. Examples
for constant data include constant strings and compiler generated
structures such as branch tables and type descriptors.

One way to accomplish this is to describe program code
including constant data as a large, immutable program object
with no pointer area. But this approach suffers from two major
drawbacks: First, constant data and ordinary objects cannot be
accessed in a uniform way. For example, accessing a constant
string within the program object will differ from accessing an
ordinary object representing a dynamically created string. Sec-
ond, it will not be possible to use pointers to build up constant
data structures such as tables containing references.

To overcome these shortcomings, constant objects are intro-
duced. A constant object is an immutable object stored as part of
the program code or as part of a special constant memory area.
There is, however, a problem in creating pointers to constant

objects (constant pointers), as this includes the conversion of a
constant object’s address into a pointer, thus substantially threat-
ening the system invariant. For this reason, operations on con-
stant pointers are restricted in that they may only be used for read
accesses, and that accesses through constant pointers are confined
to the area intended for constant objects. As a consequence, the
pointer area of a constant object can contain constant pointers
only. If the rules stated above are offended at runtime, appropri-
ate exceptions will be raised.

A pointer to a constant object is created by the create constant
pointer instruction. Constant objects will be distinguished from
ordinary objects by means of a ϕ -attribute that is introduced in
order to distinguish different kinds of objects.

Static Objects

In many systems, separate program stacks are used for different
operating modes (e.g. user mode, supervisor mode). Moreover,
multithreaded environments require separate program stacks for
each thread of execution. All these stacks are usually arranged
apart from a garbage-collected heap and managed by an operat-
ing system.

In order to permit manually managed memory areas outside of
the heap, the presented architecture proposes static objects. Static
objects can only be created in supervisor mode and are laid out in
a dedicated memory area. Static objects are identified by the ϕ -
attribute, and pointers to static objects (static pointers) may never
become visible to user programs.

Uninitialized Objects

In order to satisfy the system invariant, each pointer in a newly
created object has to be initialized before the corresponding allo-
cate instruction is permitted to complete. Therefore, the execu-
tion time for the allocate instruction is not bounded by a small
constant. This is not acceptable for hard real-time applications.

In order to provide for interruptible allocate instructions,
uninitialized objects (strictly speaking incompletely initialized
objects) are introduced. Uninitialized objects will be created if
and only if allocate instructions are suspended due to interrupts.
In order to observe the system invariant, pointers to uninitialized
objects may never be dereferenced. Like static and constant
objects, uninitialized objects are identified by the ϕ -attribute.

3.9 Summary

Figure 4 summarizes the pointer-related instructions defined by
the architecture and categorizes them on whether they read, write,
or dereference pointer registers. The register that is read, written,
or dereferenced in each case is shown in bold face.

The processor architecture supports four different kinds of
objects: dynamic (i.e. ordinary), constant, static, and uninitial-
ized. The ϕ -attribute is used to distinguish between object kinds
and may hold a value taken from the set {dyn, const, stat, uini}.
Dynamic and uninitialized objects reside in the heap, static
objects in a static area, and constant objects in the area designed
for program code and constant data. Since static and uninitialized
objects are restricted to supervisor mode, they are referred to as
system objects.
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Concerning garbage collection, the four object kinds can be
defined on how they are to be treated by a compacting (i.e. mov-
ing) garbage collector. Ordinary dynamic objects have to be
scanned for pointers and must be moved for compaction. Static
objects have to be scanned for pointers, too, but they must not be
moved. In contrast, uninitialized objects have to be moved during
compaction, but they must not be scanned since they may contain
invalid pointers. Finally, constant objects must neither be scanned
nor moved by a garbage collector. It is remarkable that, although
motivated by rather practical reasons, the four identified object
kinds completely fill the space spanned by the “scanned” and the
“moved” properties (Figure 5).

4 Processor Implementation

This section presents the implementation of a processor conform-
ing to the proposed architecture that has been realized in order to
demonstrate that the architecture can be realized in an efficient
way. The processor can be operated without a hardware garbage
collector. Extensions in support of concurrent hardware garbage
collection are described in the next section.

4.1 Object Layout

For the implementation described in the following, a word size of
32 bit is assumed. Memory is byte-addressable in order to pro-
vide for byte and half-word accesses within the data area. The

implementation slightly changes the definition of πand δ as they
describe the number of bytes rather than the number of words in
the respective area.

An object in memory is composed of two header words hold-
ing the object’s attributes followed by the pointer area and the
data area (Figure 6). For efficiency reasons, objects are double-
word aligned. As the address of an object is a multiple of eight
and π is a multiple of four, three bits in a pointer word and two
bits in the word holding π can be used for tagging purposes dur-
ing garbage collection and for encoding the ϕ -attribute.

4.2 Processor Pipeline

The implementation is based on a straightforward pipelined
RISC design [7] that is extended to efficiently handle objects and
attributes (Figure 7). The register set comprises 16 data registers
and 16 pointer registers. Instructions targeting data registers are
processed by the ALU, instructions targeting pointer registers
(e. g. allocate) are processed by the PGU (pointer generation
unit). The AGU (address generation unit) generates addresses for
accessing the cache in the memory stage. Because this cache
serves the same purpose as a data cache in conventional architec-
tures, it is designated as “data cache” even though it contains
ordinary data and pointers.

Before a pointer can be used to access an object, the object’s
attributes are needed for range checking and, in case of a data
access, for address generation as well. For this reason, every
pointer register is supplemented by attribute registers. Whenever
a pointer register contains a non-null value, the corresponding
attribute registers hold the attributes of the object the pointer reg-
ister is referring to. In this way, the effort for dereferencing a
pointer register is as low as address generation in conventional
architectures. Range checking in itself constitutes no perfor-
mance penalty since the required comparison is performed in par-
allel with address generation.

Whenever a pointer is loaded from memory, the associated
attribute registers must be loaded as well. This is accomplished
by means of an additional pipeline stage after the usual memory
stage. This stage is designated as the attribute stage and features
an attribute cache in order to allow for attribute accesses without
performance penalty in the common case.

write pointer registers

allocate object alc px := dy,dz
load pointer lp px := py[index]
copy pointer cpp px := pz
create constant pointer ccp px := dy

dereference pointer registers

load data ld dx := py[index]
load pointer lp px := py[index]
store data sd py[index] := dz
store pointer sp py[index] := pz
query π-attribute pattr dx := py
query δ-attribute dattr dx := py

read pointer registers

store pointer sp py[index] := pz
copy pointer cpp px := pz
compare pointers cmpp dx := py,pz

dx, dy, dz data registers
px, py, pz pointer registers
index indexing mode expression

Figure 4 Classification of pointer-related instructions

object kind scanned? moved?

user
objects

dynamic (ϕ = dyn) yes yes

constant (ϕ = const) no no

system
objects

static (ϕ = stat) yes no

uninitialized (ϕ = uini) no yes

Figure 5 Object kinds

pointer area data area

Figure 6 Object layout
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All caches are realized as two-way set associative copy back
caches. While the cache line size of the instruction and data
caches is eight words, an attribute cache line is two words wide
and holds the attributes of a single object only.

5 Garbage Collector Implementation

5.1 System Overview

The hardware garbage collector is realized as a separate, micro-
coded coprocessor (Figure 8). The memory controller provides
separate ports for both the main processor and the garbage collec-
tor. Due to this configuration, the inherently non-local behavior
of the garbage collector is not disrupting cache locality.

5.2 Garbage Collection Algorithm

The implemented garbage collection algorithm is derived from
the incremental copying algorithm introduced by Baker [2].
Whenever an object is evacuated from fromspace to tospace, only
space is reserved in tospace instead of actually copying the
object. In doing so, the π-attribute of the object is tagged and the
δ-attribute is saved to the tospace copy and then overwritten with
a forwarding pointer (fp) (Figure 9). In tospace, the field for the
π-attribute is initialized with a backlink (bl) to the fromspace
original. When the collector traverses the yet empty object in
tospace, each pointer in the corresponding fromspace object is
scanned by either evacuating the referenced object or, if the
object has already been evacuated, by reading the forwarding
pointer. The resulting tospace pointer is written to the tospace
object. Subsequently, the data area is copied and the tospace
object is blackened by replacing the tagged backlink with the
untagged π-attribute.

The garbage collector starts a collection cycle whenever the
amount of available memory falls below an adjustable threshold.
For real-time behavior, some memory headroom is required to
make sure that the collection cycle terminates before the mutator
runs out of memory.

5.3 Synchronization and Concurrent Object Copying

Synchronization of processor and garbage collector occurs on
different levels (Figure 8). The garbage collector ensures cache
coherence by snooping the data and attribute caches and by flush-
ing the according cache line in case of a snoop hit. Exclusive
access to objects is enforced by a cache line locking mechanism.

On the garbage collection level, a hardware read barrier triggers a
garbage collector interrupt whenever the processor tries to access
a pointer to a white object. Finally, the garbage collector is able
to stop the processor pipeline for root set scanning. Since stacks
are treated as static objects that are incrementally processed, only
the pointer registers need to be scanned atomically. For any of the
described synchronization mechanisms, it is guaranteed by
design that the duration of pauses they may cause never exceeds a
small constant in the order of a couple of hundred clock cycles.

In order to support concurrent object copying, a backlink
entry is added to every pointer register and to every attribute
cache line. If the attributes of a grey object are loaded from mem-
ory, the corresponding backlink is loaded as well. Whenever the
processor is about to access a grey object, the AGU determines
whether the tospace pointer or the backlink is to be used for
address generation. In this way, either the fromspace original or
the tospace copy of the corresponding object is accessed.

6 Experimental Results

Processor and hardware garbage collector have been described in
VHDL and realized by means of a single advanced programma-
ble logic device (Altera APEX 20K1000C). The garbage collec-
tor occupies approximately 20% of the chip area. The prototype
operates at 25 MHz and features an 8K instruction cache, an 8K
data cache and a 2K attribute cache. Furthermore, an experimen-
tal computer system based on the processor has been built up.
Standard SDRAM modules are used for main memory. A static
Java bytecode compiler and a subset of the Java class libraries
supporting text-based applications have been implemented in
order to facilitate the execution of representative programs.

Figure 10 shows the results from running several “real-world”
applications on the prototype (jflex: a scanner generator, generat-
ing a scanner for the Java language; cup: a parser generator, gen-
erating a parser for the Java language; javac: Sun’s Java com-
piler, compiling itself; jlisp: a simple Lisp interpreter, solving a
puzzle). Each application is run with different semispace sizes,
ranging from the smallest possible size (100%) to a virtually infi-
nite size. To provide a basis for comparison, all test cases are exe-
cuted with a non-incremental software collector (sw) and with
the concurrent hardware garbage collector (hw). Apart from the
type of garbage collector, the environment is exactly the same in
both cases. In Figure 10, a table entry contains the execution time
in seconds, the garbage collection time overhead in relation to the
case without any garbage collection activities (infinite semispace

Figure 8 System overview
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size), and, in case of the hardware collector, a symbol that indi-
cates whether pauses occurred due to mutator starvation (“✕ ” for
pauses, “✓ ” for real-time behavior).

All applications that have been examined make extensive use
of heap allocated memory. In the case of jflex and jlisp, most
objects die relatively young. This is the best case for a copying
collector. In contrast, applications like cup that require large
amounts of live memory for long periods of time constitute the
worst case. The results show that, depending on the application,
real-time behavior can be achieved by semispace sizes that are
25% to 100% larger than the required minimum. Under relevant
operating conditions, the overhead caused by the hardware col-
lector can be as little as a few percent or less. In any case, the
real-time hardware collector is significantly more efficient than
the non-incremental “stop-the-world” software collector.

7 Conclusions and Further Work

This paper introduces a novel RISC processor architecture that
hides the details of dynamic memory management at the proces-
sor level and ensures exact pointers without the need for tags in
order to provide a basis for hardware-supported real-time garbage
collection. An efficient implementation of a processor conform-
ing to the proposed architecture and a copying hardware garbage
collector are presented. Performance measurements on the proto-
type show that the real-time hardware garbage collector will
almost have no noticeable effect on application programs if there
is a reasonable amount of memory headroom available.

In the future, it is planned to explore the potential of genera-
tional garbage collection schemes for the presented architecture
in order to further reduce the cost of garbage collection with
respect to memory and time overhead.
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Figure 10 Measurement results (application execution time in seconds vs. relative semispace size)

100% 110% 125% 150% 200% infinite

jflex
100% = 2043K

sw 43.4 (+20.8%) 40.7 (+13.2%) 39.4 (+9.5%) 38.2 (+6.2%) 37.4 (+3.9%) 36.0 (+0.0%)
hw 38.6 (+7.4%) ✕ 37.0 (+2.8%) ✕ 36.3 (+0.9%) ✕ 36.1 (+0.3%) ✓ 36.0 (+0.1%) ✓ 36.0 (+0.0%) ✓

cup
100% = 8707K

sw 576.7 (+766.8%) 128.4 (+92.9%) 95.9 (+44.2%) 83.5 (+25.5%) 75.5 (+13.4%) 66.5 (+0.0%)
hw 406.1 (+510.4%) ✕ 107.8 (+62.0%) ✕ 85.3 (+28.2%) ✕ 72.5 (+9.0%) ✕ 67.1 (+0.8%) ✓ 66.5 (+0.0%) ✓

javac
100% = 5639K

sw 114.8 (+133.0%) 69.6 (+41.3%) 62.1 (+26.1%) 57.5 (+17.1%) 54.1 (+9.9%) 49.3 (+0.0%)
hw 93.3 (+89.4%) ✕ 57.3 (+16.3%) ✕ 51.5 (+4.6%) ✕ 50.3 (+2.2%) ✓ 49.8 (+1.2%) ✓ 49.3 (+0.0%) ✓

jlisp
100% = 129K

sw 108.5 (+14.4%) 105.1 (+10.8%) 102.3 (+7.8%) 100.0 (+5.3%) 98.0 (+3.2%) 94.9 (+0.0%)
hw 96.5 (+1.7%) ✕ 95.9 (+1.0%) ✕ 95.5 (+0.6%) ✓ 95.2 (+0.3%) ✓ 94.9 (+0.0%) ✓ 94.9 (+0.0%) ✓


