
Copyright Notice
c© 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must

be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: ++49-711-685-68026, Fax: ++49-711-685-67983

Email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de

46

Automatic dynamic memory man-
agement, also known as garbage collection, is
indispensable in controlling software com-
plexity since it increases programmer produc-
tivity and software quality. However, garbage
collection is still considered an unaffordable
luxury for application areas such as embedded,
real-time, and safety-critical systems.

I propose a novel RISC processor architec-
ture that introduces the robustness gained by
garbage collection at the machine-code level.
The architecture provides the basis for a hard-
ware garbage collector that closely cooperates
with the processor. The advantages of this
configuration include low garbage collection
overhead, low-cost synchronization of collec-
tor and application programs, high robust-
ness, and hard real-time capabilities.

Garbage collection
To start with, this article summarizes the

most commonly used garbage collection
methods and points out problems of con-
temporary software-based solutions to moti-
vate architectural support for garbage
collection.

Basic algorithms
The basic algorithms for garbage collection

are reference counting, copying, and mark-
sweep collection.1 Reference counting main-
tains a counter for each object, which holds
the number of references pointing to the
object. The garbage collector can reclaim
objects with a counter of zero. Reference
counting, however, fails to free cyclic garbage.
In contrast, mark-sweep and copying algo-
rithms, also called tracing algorithms, avoid
the cost of updating reference counters and
overcome the problem with cycles. These algo-
rithms trace memory starting with a set of
roots, usually consisting of processor registers
and the program stack. Mark-sweep collectors
first mark all reachable objects (mark phase)
and then reclaim all unmarked objects (sweep
phase). Copying collectors divide the heap into
two areas called semispaces and use only one
semispace at a time. During collection, they
copy all reachable objects from one semispace
to the other, thereby inherently compacting
the heap. Although copying collectors need
twice as much memory as their mark-sweep
counterparts, they are particularly attractive

Matthias Meyer
University of Stuttgart

ALONG WITH THE SUCCESS OF JAVA, GARBAGE COLLECTION ADVANCES TO

EMBEDDED AND REAL-TIME SYSTEMS. OUR NOVEL PROCESSOR

ARCHITECTURE LAYS THE FOUNDATION FOR EFFICIENT REAL-TIME GARBAGE

COLLECTION IN HARDWARE AND GUARANTEES POINTER INTEGRITY AT THE

MACHINE-CODE LEVEL.

A NOVEL PROCESSOR
ARCHITECTURE WITH

EXACT TAG-FREE POINTERS

Published by the IEEE Computer Society 0272-1732/04/$20.00  2004 IEEE

because the cost of garbage collection is pro-
portional to the amount of reachable objects
rather than the size of the entire heap.

Traditional implementations of tracing
algorithms suspend application processing for
the entire duration of a garbage collection
cycle and can cause long and unpredictable
pause times. For this reason, they are not
applicable to interactive systems or real-time
environments.

Incremental garbage collection
Incremental garbage collection techniques

aim to improve the interactive response of
garbage-collected systems. Such techniques
allow application processing to continue dur-
ing garbage collection. In this context, the
application program is usually referred to as the
mutator, because it changes the graph of objects
while the collector is traversing the heap.

To illustrate, consider describing incre-
mental garbage collection with Dijkstra’s tri-
color abstraction.2 In this abstraction,

• black indicates that the collector has fin-
ished with an object for the current
garbage collection cycle,

• grey indicates that the collector hasn’t fin-
ished with the object or, for some reason,
has to visit the object again, and

• white indicates that the object has not
been visited by the collector.

At the end of a garbage collection cycle, the
collector will reclaim white objects.

Problems can arise if the mutator writes a
pointer to a white object into a black object.
If the original pointer to the white object is
destroyed and no further pointer to the white
object exists, the collector will illegally discard
the object at the end of the garbage collection
cycle. Usually, either read or write barrier
methods prevent the mutator from disrupt-
ing the garbage collector. Read barriers ensure
that the mutator never sees a white object.
Whenever the mutator accesses a pointer to a
white object, the collector immediately visits
the object. In contrast, write barriers ensure
that black objects turn grey as soon as the
mutator installs a pointer to a white object.
To realize read or write barriers, the compiler
must emit a few instructions before each
pointer load or store, which incurs substan-

tial runtime overhead and increases the code
size considerably.3

Many incremental garbage collection algo-
rithms are designated as real-time, because
garbage collection pauses are, in the majority
of cases, too short for a user to notice. Hard
real-time systems, however, require correct
responses to environmental changes within a
short and specified time. Because software-
based incremental algorithms usually must
rely on some sort of atomic action, such as
scanning the complete root set or processing
an entire object, they are not applicable to
hard real-time environments. Although there
are software-based garbage collected systems
that claim to satisfy hard real-time require-
ments, these implementations suffer consid-
erable execution time overhead (due to
expensive object accesses, write barriers, syn-
chronization points, and root set copies) as
well as memory space overhead (because of
auxiliary data structures and internal frag-
mentation).4

Pointer finding
All garbage collection methods face the

problem of pointer finding or pointer identifi-
cation. If the garbage collector cannot unam-
biguously distinguish pointers from
nonpointers, it can only employ conservative
garbage collection methods and has to con-
sider any bit pattern that looks like a pointer
to be a pointer, to avoid freeing memory still
in use. The conservative approach, however,
has drawbacks. A value mistakenly identified
as a pointer might refer to an object that recur-
sively could contain pointers to other objects,
thus keeping the collector from freeing unpre-
dictable amounts of memory. Furthermore, a
conservative collector is incapable of moving
objects because this necessitates the update of
pointers, and updating some data erroneous-
ly taken as a pointer can be disastrous. For this
reason, conservatively collected heaps are sub-
ject to fragmentation unless the compiler
employs costly measures such as using han-
dles. So copying collectors or other compact-
ing collectors, such as mark-sweep-compact,
are unusable unless exact information about
the location of each pointer is available.

To realize exact (nonconservative) garbage
collection (also known as precise or accurate
garbage collection), many implementations

47MAY–JUNE 2004

spend a lot of effort in searching and exactly
identifying pointers. In object-oriented lan-
guages, pointers in heap objects are often iden-
tifiable by type descriptors. These descriptors
are usually available in each object because
they are necessary for dynamic binding and
runtime checks. However, locating pointers
in the program stack and in processor regis-
ters is more difficult, particularly in the con-
text of optimizing compilers. Although it is
possible to maintain maps describing which
stack locations or processor registers contain
pointers, the cost of updating such maps at
runtime is prohibitively high. For this reason,
most software-based solutions rely on tables
that describe all pointer locations in the stack
and in registers. The compiler constructs a set
of tables for each program point where a col-
lection might occur (gc-points).5

Software-based methods for exact pointer
identification, however, share disadvantages.
The tables necessary to describe all pointer
locations at all gc-points usually increase code
size dramatically. Moreover, real-time envi-
ronments must ensure that suspended threads
reach the next gc-point within a bounded
amount of time. Finally, these methods
depend heavily on compiler support and are
not generally applicable.

Related work
Known since 1966, capability-based archi-

tectures use capabilities instead of pointers to
refer to memory.6 Examples of capability-
based computers are the Plessey System 250,
the IBM System/38, and the Intel iAPX 432.
Capabilities provide a safe mechanism to uni-
formly address both main memory and sec-
ondary storage. A capability does not contain
the object’s physical address. Instead, it con-
tains a unique object identifier and the access
rights for the object. The unique identifier
locates a descriptor that specifies the physical
location and the object’s size. Capability-based
architectures either tag capabilities or keep
them separate from ordinary data to guaran-
tee that users never compromise them. They
provided for exact capability identification
long before garbage collection became a major
topic of interest.

Starting in the 1980s, various architectures
evolved to support particular programming
languages, most notably Lisp and Smalltalk.

Example architectures include SPUR (Sym-
bolic Processing Using RISCs),7 Symbolics,8

SOAR (Smalltalk On A RISC),9 and Mush-
room (Manchester University Software and
Hardware Realization of an Object-Oriented
Machine).10 These architectures distinguish
among types of data (including pointers) by
augmenting every memory word with one or
more tag bits and provide limited hardware
support for garbage collection, such as hard-
ware-assisted read or write barriers.

More recently, researchers have proposed
active memory modules with hardware sup-
port for garbage collection, including Nilsen
and Schmidt’s garbage collected memory
module,11 Wise et al.’s reference count mem-
ory,12 and Srisa-an et al.’s active memory
processor.13 Because these architectures rely
on specialized memory, the hardware cost for
the memory modules is relatively high and,
above all, depends on the size of the garbage-
collected memory.

For this work, three observations about sys-
tems with hardware support for exact point-
er identification, garbage collection, or both
are of particular interest. First, many archi-
tectures are designed for special programming
languages. Second, only the expensive active
memory modules used by Nilsen and
Schmidt, and Srisa-an et al., target hard real-
time applications, but they do not address the
problem of processing the root set in a bound-
ed amount of time. Third, apart from early
capability-based computers, all architectures
for exact garbage collection use tags to iden-
tify pointers, and most of them provide no
hardware mechanism to guarantee pointer
integrity.

Processor architecture
Exact hardware-supported garbage collec-

tion must be able to unambiguously distin-
guish pointers from nonpointers at the
hardware level. If the architecture uses tag bits
for this purpose, a 32-bit system needs main
memory that is 33 bits wide. Moreover, a
tagged architecture must expend considerable
effort in initializing and maintaining these
tags, and a garbage collector must examine
every single word in order to find all pointers.
Finally, the use of tag bits alone is insufficient
to guarantee pointer integrity.

As an alternative approach, this article

48

EMBEDDED PROCESSORS

IEEE MICRO

introduces a processor architecture that strict-
ly separates pointers from nonpointer data,
allowing for tag-free pointer identification. To
ensure exact pointers, the architecture main-
tains the following system invariant:

• First clause (§1). The architecture iden-
tifies every memory word or register to
be a pointer or not.

• Second clause (§2). Each pointer value is
either null or uniquely associated with an
existing object.

Programming model
Figure 1 shows the programming model of

the processor architecture. It specifies separate
register sets for data and pointers. Data registers
serve as general-purpose registers whereas
pointer registers are exclusively for referring to
objects in memory. To comply with the system
invariant, it must be impossible to write arbi-
trary values to pointer registers or to perform
arithmetic operations on pointer registers.

The processor architecture’s memory model
is object-based. An object has a separate data
area and a separate pointer area. The object’s
δ-attribute describes the size of the data area,

and the object’s π-attribute describes the size
of the pointer area. The attributes are deter-
mined when the object is created and cannot
be altered thereafter.

The stack object, like every object, consists
of a data area and a pointer area and can thus
be thought of as two separate stacks. Pointer
register p1 holds the reference to the stack
object. In each of the two areas, a stack index
indicates the first free location and separates
the respective area into the actual stack and a
free area. The architecture reserves two data
registers for the stack indices. Register d1
holds the pointer stack index (psix), and reg-
ister d2 holds the data stack index (dsix).

However, if the architecture treats the stack
like an ordinary object with constant size, the
system cannot tell whether a pointer word
belongs to the actual stack or to the free area.
Since every word in the pointer area is consid-
ered a pointer, there might be many pointers
within the free area pointing to objects that are
no longer necessary. Though this constitutes
no threat to the system invariant, a garbage
collector will not be able to reclaim these
objects because they are still accessible, caus-
ing unpredictable amounts of floating garbage.

49MAY–JUNE 2004

Data register set

p(Np–1) d(Nd–1)

Pointer register set

π–1

Pointer area

210 δ–1210

Data area

Pointer stack area

10 0psix

Data stack area

dsixΠ–1 ∆–1

3 3 π Size of pointer area
δ Size of data area

? ?? ?

p2

p1

p0 = null d 0 = zero

d 2

d 1

Pointer word

Data word

Undefined word?

Np No. of pointer registers

Nd No. of data registers

Π Max. size of pointer stack area
∆ Max. size of data stack area

psix Pointer stack index
dsix Data stack index

(a)

(b)

(c)

Register set

Object model

Stack object

1

Figure 1. Processor architecture’s programming model. The register set (a), object model (b),
and stack object (c) strictly separate pointers from nonpointer data.

One possible solution to this problem is
explicitly storing a null in the appropriate
stack location whenever a pointer is removed
from the stack. However, this approach is not
particularly attractive because of the related
overhead, especially if many pointers are to be
removed from the stack at the same time, such
as during the deallocation of a stack frame at
the end of a subroutine.

A better approach is treating the stack as an
object of dynamic size by regarding psix as the
π-attribute and dsix as the δ-attribute of the
stack object. With respect to pointer identifi-
cation and the system invariant, the architec-
ture will only consider words at indices below
psix to be pointers.

Instruction set
The processor architecture defines only

pointer-related instructions, including load
and store instructions. The design of other
instructions, such as for arithmetic or program
control, remains the choice of a particular
implementation.

Allocate object. The processor architecture
entirely abstracts dynamic memory manage-
ment. A special allocate object instruction cre-
ates a new object and associates an object
reference with it. The allocate instruction takes
the values of the π- and the δ-attribute for the
new object as arguments and returns the ref-
erence to the newly created object in a point-
er register. Every pointer word in the pointer
area of the created object is initialized with null
before the allocate instruction completes.

There is no such thing as an instruction for
the deletion of objects. The manual deletion
of objects unavoidably leads to the dangling-
reference problem, thus violating the system
invariant. For this reason, the architecture
relies on garbage collection at the processor
level.

Load and store. The instruction set provides
separate load and store instructions for data
words and pointers. The load data and store
data instructions exclusively move data words
between an object’s data area and data regis-
ters. Similarly, the load pointer and store point-
er instructions move only pointers between
an object’s pointer area and pointer registers.
To identify the memory word they should

access, load and store instructions use a point-
er register holding the reference to the object
and a positive integer index. To compute this
index, an implementation can provide index-
ing modes (the equivalent to addressing
modes in conventional architectures) using
constant indices, data registers, displacements,
and scale factors.

Accessing memory words outside the data
or pointer area of an object can cause unpre-
dictable effects. Depending on the object lay-
out, it might be possible to access pointers by
means of out-of-range data load instructions
or vice versa. For this reason, the architecture
prescribes bounds checks. If a bounds check
fails, the processor does not permit the load
or store instruction to complete and raises an
index out of bounds exception. For similar rea-
sons, the processor prevents a memory access
that uses a pointer register holding null and
issues a null pointer exception.

Push pointer. To push a pointer value onto the
pointer stack, a program has to store the point-
er and increment psix. However, if the archi-
tecture were to permit a program to store the
pointer before incrementing psix, it would
offend the first clause (§1) of the system invari-
ant between the two operations, as the point-
er just stored is not yet identified as a pointer.
If, on the other hand, a program increments
psix before storing the pointer, it would offend
the second clause (§2) between the two oper-
ations, since a word identified as a pointer does
not yet contain a valid pointer.

The architecture solves this problem by pro-
viding a pointer store instruction (or, alterna-
tively, an indexing mode for use with a pointer
store instruction) that both stores a pointer at
the first free pointer stack location and incre-
ments the pointer stack index in an indivisi-
ble fashion. Furthermore, this must be the
only instruction to increment the pointer
stack index. Any attempt to increment the
pointer stack index by other instructions
results in a psix increment exception.

Copy and compare pointers. In contrast to the
multitude of register-to-register instructions
for operations on data registers, the architec-
ture defines a tightly restricted set of two
instructions for pointer-related register-to-reg-
ister operations. The copy pointer instruction

50

EMBEDDED PROCESSORS

IEEE MICRO

copies the contents of a pointer register to
another pointer register, while the compare
pointers instruction checks whether two point-
er registers refer to the same object.

Query object attributes. The instruction set
provides two instructions to query the attrib-
utes π and δ of an object. An attempt to query
the attributes via a null pointer results in a null
pointer exception.

Special objects
Apart from dynamically created objects, the

architecture defines special types of objects
that serve particular purposes.

Constant objects. These make it possible to
access constant data in the same way as
dynamically created objects. Constant objects
exist before a program starts (for example, as
part of the program code) and typically real-
ize constant strings and compiler-generated
structures, such as branch tables and type
descriptors.

A pointer to a constant object is created by
a create constant pointer instruction. Since this
instruction includes the conversion of an
address into a pointer, it substantially threat-
ens the system invariant. For this reason, oper-
ations on constant pointers are only for read
accesses, and the architecture confines access-
es through constant pointers to the area for
constant objects. As a consequence, constant
objects can only contain constant pointers.
Violating these rules at runtime will raise
appropriate exceptions.

Static objects. In many systems, different oper-
ating modes require separate program stacks;
for example, user or supervisor modes employ
a separate stack. Moreover, multithreaded
environments require separate program stacks
for each thread of execution. The operating
system usually arranges all these stacks apart
from a garbage-collected heap.

To permit manually managed memory areas
outside the heap, this architecture uses static
objects. The operating system creates static
objects by means of a privileged instruction
and lays them out in a dedicated memory area.

Uninitialized objects. To satisfy the system
invariant, each pointer in a newly created

object must be initialized before the corre-
sponding allocate instruction can complete.
Therefore, there is no small upper bound on
the execution time for the allocate instruction.
Thus, this sort of initialization is not accept-
able for hard real-time applications.

To provide for interruptible allocate instruc-
tions, the architecture introduces uninitial-
ized objects (strictly speaking, incompletely
initialized objects). The processor creates
uninitialized objects only if it suspends allo-
cate instructions because of interrupts. To
observe the system invariant, instructions are
not allowed to dereference pointers to unini-
tialized objects.

Summary. The processor architecture supports
four types of objects: dynamic (ordinary),
constant, static, and uninitialized. Dynamic
and uninitialized objects reside in the heap,
static objects in a static area, and constant
objects in the area for program code and con-
stant data. Static and uninitialized objects are
available only in supervisor mode.

It is possible to define the four object types
by the way a compacting (moving) garbage
collector treats them. Ordinary dynamic objects
require collectors to scan them for pointers
and move them for compaction. Static objects
require scanning for pointers, too, but collec-
tors must not move them. In contrast, collec-
tors must move uninitialized objects during
compaction, but must not scan them because
these objects can contain invalid pointers.
Finally, constant objects must not be moved or
scanned. It is remarkable that, although moti-
vated by rather practical reasons, these four
object types completely fill the space spanned
by the scan and move properties.

Processor implementation
My colleagues and I have implemented a

32-bit RISC processor conforming to the pro-
posed architecture to demonstrate that this
architecture can yield an efficient implemen-
tation. This processor will operate without a
hardware garbage collector as long as the oper-
ating system provides a software garbage col-
lector.

Object layout
An object in memory consists of a two-

word attribute header for π and δ followed by

51MAY–JUNE 2004

the pointer and the data areas. The attributes
describe the number of bytes in these areas.
For efficiency, objects are always double-word
aligned. The processor encodes a pointer as
the address of the object that the pointer refers
to. Because of byte addressing and alignment
constraints, some bits in words holding a
pointer or π are available for identifying the
four different object types and for tagging pur-
poses during garbage collection.

Processor pipeline
Figure 2 shows the basis for our imple-

mentation: a straightforward pipelined RISC
design that extends to efficiently handle
objects and attributes.

The register set includes 16 data and 16
pointer registers. In the execute stage, the arith-
metic logic unit (ALU) processes instructions
targeting data registers, and the pointer gener-
ation unit processes instructions (such as allo-
cate) that target pointer registers. The address

generation unit (AGU) generates addresses for
accessing the cache in the memory stage.
Because this cache serves the same purpose as
a data cache in conventional architectures, the
figure shows it as a “data cache” even though it
contains ordinary data and pointers.

Before an instruction can use a pointer to
access an object, it is necessary to have the
object’s attributes for range checking and for
address generation. For this reason, attribute
registers supplement every pointer register.
Whenever a pointer register contains a non-
null value, the corresponding attribute regis-
ters hold the attributes of the object to which
the pointer register refers. In this way, the
effort for dereferencing a pointer register is as
low as that of address generation in conven-
tional architectures. Range checking is not a
performance penalty because it occurs in par-
allel with address generation.

Whenever an instruction loads a pointer
register from memory, it must also load the
associated attribute registers. This happens
within an additional pipeline stage after the
usual memory stage. This attribute stage uses
an attribute cache to allow for attribute
accesses without a performance penalty for
the common case.

All caches are two-way set-associative copy
back. The cache line size of the instruction
and data caches is eight words. In contrast, an
attribute cache line is two words wide and
holds only the attributes of a single object.

Garbage collector implementation
Figure 3 shows how we realize a hardware

garbage collector as a separate, microcoded
coprocessor. The memory controller provides
separate ports for both the main processor and
the garbage collector. Because of this configu-
ration, the garbage collector’s inherently non-
local behavior does not disrupt cache locality.

Garbage collection algorithm
The implemented garbage collection algo-

rithm derives from the incremental copying
algorithm that Baker introduced.14 Figure 4
shows that whenever the garbage collector
evacuates an object from fromspace to
tospace, it only reserves space in tospace
instead of actually copying the object. In
doing so, the collector tags the π-attribute of
the object and saves the δ-attribute to the

52

EMBEDDED PROCESSORS

IEEE MICRO

Fetch

R
eg

is
te

r
se

t

In
st

ru
ct

io
n

ca
ch

e

D
at

a
ca

ch
e

A
ttr

ib
ut

e
ca

ch
eA
LU

P
G

U
A

G
U

Decode Execute Memory Attribute

Figure 2. Basic processor pipeline structure. An additional
pipeline stage, the attribute stage, provides efficient
attribute access.

Attribute
cache

Main
processor

Garbage
collector

Data
cache

Instruction
cache

π
δ

π
δ

Cache access

Memory controller

Read barrier

Start/stop

Figure 3. System overview. The garbage collector is a separate, microcoded
coprocessor that tightly cooperates with the main processor.

tospace copy and then overwrites it with a for-
warding pointer. In tospace, the field for the
π-attribute is initialized with a backlink to the
fromspace original. When the collector tra-
verses the yet empty object in tospace, it scans
each pointer in the corresponding fromspace
object by either evacuating the referenced
object or, if the object has already evacuated,
by reading the forwarding pointer, and writes
the resulting tospace pointer to the tospace
object. Subsequently, the collector copies the
data area and blackens the tospace object by
replacing the tagged backlink with the
untagged π-attribute.

A garbage collection cycle starts whenever
the amount of available memory falls below
an adjustable threshold. Real-time behavior
requires some memory headroom to ensure
that the collection cycle terminates before the
mutator “starves” (runs out of memory).

Synchronization
Figure 3 shows that the synchronization of

the processor and the garbage collector occurs
on different levels. The garbage collector
ensures cache coherence by checking the
address tags and valid bits in the data and
attribute caches, and by flushing cache lines
if necessary. A cache line locking mechanism
enforces exclusive access to objects. On the
garbage collection level, a hardware read bar-
rier triggers a garbage collector interrupt
whenever the processor tries to access a point-
er to a white object. Finally, the garbage col-
lector can stop the processor pipeline to scan
the root set. Because the architecture treats
stacks as static objects, the garbage collector
must only scan the pointer registers atomi-
cally and processes stacks in an incremental
way. For any synchronization mechanism, our
implementation guarantees by design that
synchronization pauses never exceed a small
constant on the order of a couple of hundred
clock cycles. As an additional benefit, the syn-
chronization mechanisms do not require any
compiler support.

Concurrent compaction
To support concurrent object copying, a

backlink entry supplements every pointer reg-
ister and every attribute cache line. If the
processor loads the attributes of a grey object
from memory, it also loads the corresponding

backlink. Whenever an instruction is about
to access a grey object, the AGU determines
whether the tospace pointer or the backlink
is to be used for address generation, and the
instruction accesses either the fromspace orig-
inal or the tospace copy. This way it is not nec-
essary to lock an entire object while the
garbage collector is copying it.

Experimental results
We have developed the processor and the

hardware garbage collector in VHDL, putting
them together on a single, advanced, pro-
grammable-logic device, an Altera APEX
20K1000C. The garbage collector occupies
approximately 20 percent of the chip area. The
prototype operates at 25 MHz and features 8-
Kbyte instruction and data caches, and a 2-
Kbyte attribute cache. We have also built an
experimental computer system based on the
processor, using standard SDRAM modules
for main memory. To facilitate the execution
of representative programs, we implemented
a static Java bytecode compiler and a subset of
the Java class libraries supporting text-based
applications.

Figure 5 shows the garbage collection over-
head that we measured on the prototype by
running several real-world applications with
different semispace sizes. To provide a basis
for comparison, all test cases execute with a
nonincremental software garbage collector
and with the concurrent hardware garbage
collector. Apart from the type of garbage col-

53MAY–JUNE 2004

White

Grey (1)

Grey (2)

Black

π δ

π δ

δ

δ

π

π fp

fp bl

fp bl

π

Fromspace Tospace

Figure 4. Object states during garbage collection. The attributes of grey
objects are split between fromspace and tospace. A forwarding pointer (fp)
and a backlink (bl) doubly link the tospace copy to the fromspace original.

lector, the environment is exactly the same in
both cases. For the hardware collector, Figure
5 shows a symbol indicating whether pauses
occurred due to mutator starvation (“×”) or
whether enough memory headroom was avail-
able to ensure hard real-time behavior (“�”).

All applications that we have examined
make extensive use of heap allocated memo-
ry. In the case of jflex and jlisp, most objects
die relatively young, the best case for a copy-
ing collector. In contrast, applications like cup
that require large amounts of live memory for
long periods of time constitute the worst case.
The results show that the applications we have
examined can achieve real-time behavior by
using semispace sizes that are 25 to 100 per-
cent larger than the required minimum.

Under relevant operating conditions, the
hardware collector’s runtime overhead is small.
In any case, the real-time hardware collector
is significantly more efficient than the nonin-
cremental stop-the-world software collector.

Our novel RISC processor architecture
hides the details of dynamic memory

management at the processor level. It ensures
exact pointers without tags and provides a
basis for hardware-supported real-time

garbage collection. We present an efficient
implementation of a processor conforming to
the proposed architecture and a copying hard-
ware garbage collector. Performance mea-
surements on the prototype show that, with
a reasonable amount of available memory
headroom, the real-time hardware garbage
collector will have almost no noticeable effect
on application programs.

In the future, we plan to explore the poten-
tial of more elaborate garbage collection algo-
rithms such as generational garbage collection
to further reduce the cost of garbage collection
in terms of memory and time overhead. MICRO

References
1. R. Jones and R. Lins, Garbage Collection:

Algorithms for Automatic Dynamic Memory
Management, Wiley, 1996.

2. E.W. Dijkstra et al., “On-the-fly Garbage Col-
lection: An Exercise in Cooperation,” Comm.
ACM, vol. 21, no. 11, Nov. 1978, pp. 966-
975.

3. B. Zorn, Barrier Methods for Garbage Col-
lection, tech. report CU-CS-494-90, Univ. of
Colorado, 1990.

4. F. Siebert, “Hard Real-Time Garbage Col-
lection in the Jamaica Virtual Machine,”

54

EMBEDDED PROCESSORS

IEEE MICRO

150 200125110 150 200125110 150 200125110 150 200125110

+10

+20

+30

+40

+50

+0

+
93

%

+
62

%

�✕ �✕ ✕ ✕ ✕ � ✕ ✕ � � ���✕

Software collector
Hardware collector
Mutator starvation
Real-time behavior

✕

�

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

ov
er

he
ad

 (
%

)

Relative semispace size (%)

jflex
(scanner generator)

semispacemin = 2,043 Kbytes
timemin = 36.0s

cup
(parser generator)

semispacemin = 8,707 Kbytes
timemin = 66.5s

javac
(Sun's Java compiler)

semispacemin = 5,639 Kbytes
timemin = 49.3s

jlisp
(LISP interpreter)

semispacemin = 129 Kbytes
timemin = 94.9s

Figure 5. Relative execution time of software and hardware garbage collectors for several applications and semispace sizes.
A relative semispace size of 100 percent denotes the maximum amount of live memory that an application uses
(semispacemin). This figures give the relative execution time with respect to the execution time with a virtually infinite
semispace size (timemin).

Proc. Sixth Int’l Conf. Real-Time Computing
Systems and Applications, IEEE CS Press,
1999, pp. 96-102.

5. O. Agesen, D. Detlefs, and E. Moss,
“Garbage Collection and Local Variable Type-
Precision and Liveness in Java Virtual
Machines,” ACM SIGPLAN Conf. Program-
ming Language Design and Implementation
(PLDI 98), ACM Press, 1998, pp. 269-279.

6. H.M. Levy, Capability-Based Computer Sys-
tems, Digital Press, 1984.

7. M. Hill et al., “Design decisions in SPUR,”
IEEE Computer, vol. 19, no. 11, Nov. 1986,
pp. 8-22.

8. D.A. Moon, “Garbage Collection in a Large
LISP System,” Proc. Conf. LISP and Func-
tional Programming, ACM Press, 1984, pp.
235-246.

9. D. Ungar et al., “Architecture of SOAR:
Smalltalk on a RISC,” Proc. 11th Annual
Symp. Computer Architecture (ISCA 84),
IEEE CS Press, 1984, pp. 188-197.

10. M. Wolczko and I. Williams, “Multi-Level
Garbage Collection in a High-Performance
Persistent Object System,” Proc. 5th Int’l
Workshop Persistent Object Systems,
Springer Verlag, 1992, pp. 396-418.

11. K.D. Nilsen and W.J. Schmidt, “A High-Per-
formance Hardware-Assisted Real-Time

Garbage Collection System,” J. Programming
Languages, vol. 2, no. 1, Jan. 1994, pp. 1-40.

12. D.S. Wise et al., “Research Demonstration
of a Hardware Reference-Counting Heap,”
LISP and Symbolic Computation, vol. 10, no.
2, July 1997, pp. 159-181.

13. W. Srisa-an, C.D. Lo, and J.M. Chang, “Active
Memory Processor: A Hardware Garbage
Collector for Real-Time Java Embedded
Devices,” IEEE Trans. Mobile Computing,
vol. 2, no. 2, Apr.-June 2003, pp. 89-101.

14. H.G. Baker, “List Processing in Real Time on
a Serial Computer,” Comm. ACM, vol. 21,
no. 4, Apr. 1978, pp. 280-294.

Matthias Meyer is a research group leader at
the Institute of Communication Networks
and Computer Engineering at the University
of Stuttgart, Germany. His research interests
include digital systems design, computer
architecture, compiler construction, garbage
collection, and Java. Meyer has a Diploma
degree from the University of Stuttgart in
Electrical Engineering.

Direct questions and comments about this
article to Matthias Meyer, University of
Stuttgart, IKR, Pfaffenwaldring 47, D-70569
Stuttgart; meyer@ikr.uni-stuttgart.de.

55MAY–JUNE 2004

Get access
to individual IEEE Computer Society

documents online.

More than 67,000 articles

and conference papers available!

US$9 per article for members

US$19 for nonmembers

http://computer.org/publications/dlib/

