Building a hierarchical CAN-Simulator Using an
Object-Oriented Environment

Martin Lang, Matthias Stiimpfle, Hartmut Kocherl

University of Stuttgart, IND
Institute of Communication Switching and Data Technics
Seidenstr. 36
70174 Stuttgart, Germany

As today’s systems are becoming more and more complex, simulation is often
the only viable way to verify the functionality of a system, or to estimate its
performance. In this paper, we will present a flexible general purpose
framework for the simulation of complex hierarchical systems. The framework
is implemented in C++ and uses high-level abstractions that are closely related
to the problem domain. This eases the mapping from a simulation model to an
actual simulation program. The framework supports hierarchical decomposition
of simulation models into submodels and model components. Model
components are strictly encapsulated and communicate with each other using a
handshake protocol. This offers the ability to highly reuse standardized model
components and quickly create or modify a simulation model using a ‘plug-
and-play’ approach. As an application we used this framework for the
simulation of CAN (controller area network) systems. We will show that the
hierarchical modelling and the strict encapsulation forced by the framework
were real benefits. Different CAN components could be developed seperately
and are now available as a CAN part library. Complete systems can now be
simulated and evaluated by taking parts from the library and connecting them
using the standardized interface from the simulation framework.

1 Introduction

Today’s systems are becoming more and more complex. The human mind is
unable to comprehend complex systems in their entirety. Therefore, complex systems
need to be structured in a way that allows humans to cope with this complexity. This
is usually achieved by breaking down the system into a hierarchy of subsystems and
modules [2]. In such cases, simulations can help in evaluating different design
choices. Simulation programs can be used to verify the functionality of the system as
well as to estimate the performance of the target system.

Simulating a complex system is itself a complex task. Therefore, it is important
to structure simulation software in a suitable way. The complexity of simulation

1 The author is now with Rational, Pullach im Isartal, Germany

programs can be reduced by decomposing the simulation model into a hierarchy of
submodels that can be refined in further steps. Although many parts of a simulation
model could potentially be reused across different applications, this is not supported
very well in current simulation programs due to strong coupling between model
components. Reuse of models and submodels would be an important step towards
economic development of simulation programs that could be used to investigate
several design choices in a cost efficient way. This is a general problem of software
development and is one of the reasons for the so-called software crisis. The object-
oriented paradigm promises to improve the situation dramatically. That's why more
and more simulation libraries are written in an object-oriented programming
language.

Currently, two approaches can be differentiated: on the one hand, simulation
environments are mostly targeted at specific application areas. They provide high-
level abstractions that are taken from the problem domain. Therefore, they are easy to
learn and use. Sometimes, they even offer graphical user interfaces and their own
simulation language, e.g., [1, 10]. Unfortunately, most simulation environments
cannot be extended by the user, or do not adapt very well to different needs even
within the same application domain.

On the other hand, general purpose simulation libraries promise to overcome
these difficulties. They are developed using general purpose programming languages.
Therefore, they can be extended and adapted easily by the user. Recently, many
simulation libraries have been written in object-oriented languages, mostly C++.
Unfortunately, most of them focus on implementation issues rather than using
abstractions from the problem domain. There is a semantic gap between the low-level
abstractions they offer, such as process classes, and the problem-oriented abstractions
the user wants. Simulation libraries that are more problem oriented are just emerging,
e.g., [9, 12, 13]. However, most systems don’t offer support for hierarchical systems.
This makes it difficult to implement reusable submodels, and components that can be
further refined as the design evolves. As we have already pointed out, these are
essential features for simulating complex systems.

This paper describes a general purpose simulation framework that has already
been used extensively for the simulation of complex communication systems. It tries

"to narrow the gap between the problem domain and implementation by using high-
level abstractions. Therefore, users can easily map their simulation models to actual
simulation programs. The framework can be easily extended because it is written in
standard C++. The implementation takes advantage of the latest additions to the C++
language, namely templates and the exception handling mechanism [6]. It uses few
basic abstractions and emphasizes a clean software architecture. Hierarchical system
decomposition is supported, and it is even possible to write distributed simulation
programs [11]. Strict encapsulation with clean interfaces between model components
enables massive reuse of simulation models.

In Section 2 we will present the key design issues of the framework. A more
detailed description can be found in [7, 8]. Section 3 deals with the modeliing and
simulation of a CAN system The paper ends with a brief summary.

2 An Object-Oriented Simulation Framework

2.1 Software Architecture

The following section describes the overall software architecture of the
simulation framework. Figure 2.1 shows a typical system. Two main parts can be
distinguished. The simulation support subsystem contains all components that are
necessary to control the execution of a simulation program. It also contains classes
that simplify the development of simulation programs, like a modular I/O concept,
random number generation, and statistical evaluation. It is further described in
Section 2.5.

Simulation Support

) Output Port Input Port

Model
= Entity pr .

E————:Id—

Y
3

L.

Entity

{

A

Figure 2.1: System Architecture

The main part of the system is the simulation model. The simulation model can
be hierarchically decomposed into submodels and model components. The latter are
called entities. Entities communicate with each other by exchanging messages. All
messages are derived from an abstract base class that defines some common
properties, e.g. the message type. Contents and meaning of a message are user
defined. Each entity can evaluate only those aspects of a message which it is
interested in.

A port mechanism is used for communication. Transferring messages between
entities is as simple as connecting the input and output ports of these entities. A
handshake protocol ensures that both entities are ready to exchange messages before
they are actually sent. Entities can be seen as black boxes that communicate with the
outside world using ports. This strict encapsulation allows separation of the behavior
of an entity from the structural arrangement within the model. Therefore, it is easy to
insert a new entity between existing entities without modifying the existing ones.

The simulation framework is based on an event-driven paradigm. This approach
has been prefered over a process-oriented paradigm because it was clear how a
hierarchical event concept should work, whereas there is no suitable definition of
hierarchical processes. In event-driven simulations, events are used to plan future
activities. Events are entered in a sorted event list and processed later. The meaning
of an event depends on the entity that generated it. Events are passed to the entity for
processing. The entity might process the event itself, or may pass it on to its parent
entity. This supports hierarchical processing of events.

A model entity is a special entity that has a built-in event list. Usually, the model
entity stays at the top level of the simulation model hierarchy. Since a model may be
composed of more than one submodel, the framework supports more than one event
list. The submodels are responsible for synchronizing distributed event lists.

The following sections describe the above-mentioned mechanisms in more

detail.

2.2 Model Components

A simulation model can be seen as a network of model components, which we
call entities. All entities are derived from a base class TEntity that defines the
common properties of all entities, such as naming, and methods for dealing with ports

and events.
Decomposing a model into a hierarchy of entities is an important means to

reduce overall complexity. Therefore, each entity can contain other entities internally.
If this principle is applied recursively, it leads to a tree structure of entities with the
model entity as the root. Each entity has a reference to its parent entity. Figure 2.2
depicts a simple queuing model that shows two network nodes in a communication
system. Bach node consists of an input queue and a server entity. Figure 2.3 shows
the resulting object tree using the notation of [2, 3]. The mapping from the
components of the simulation model to the implemented entities is straightforward.

TestModel
Node 1 Node 2
Queue Queue
-] Server |-e-t—prp | | I

Figure 2.2: A simple simulation model

TestModel

Figure 2.3: Object diagram of the model

An interesting part is the interaction of entities. In order to ease reuse of entities,
the coupling should only be as close as absolutely necessary. During initialization,
each entity gets a reference to the parent entity. Because it does not know the exact
type of the parent, it can only use services that are already defined in the base class
TEntity. Because of polymorphism, the behavior of those services still depends on the
actual type of the parent entity. That way, many services can be delegated to parent
entities without knowing the structure of the containment hierarchy. Whereas child
entities may only use anonymous services of the parent entity, parent entities do know
all child entities. Therefore, they are allowed to call all methods of their children
directly without sacrificing encapsulation.

2.3 Port Concept

The port concept is used to pass messages between entities. To improve type
safety, input and output ports are distinguished. All connections are unidirectional
point-to-point connections between two ports. Ports are registered with their owning
entity during construction. Ports may be defined as member objects of the owning
entity, or they may be created dynamically. The latter is useful for general purpose
components like multiplexers, where the number of input ports depends on the
simulation model. Two ports can be connected by calling the Connect method of the
TEntity class. This method also checks if a connection is legal.

All messages must be derived from a common base class TMessage. The content
of a message depends on the simulated problem and can be defined in derived classes.

Messages are passed between ports using a handshake protocol. This is shown in
an object diagram in Figure 2.4. After an entity notifies an output port that a new
message is available the port calls the Messagelndication method of the
corresponding input port. The receiving entity can then decide if it is willing to accept
the message. It can do so by calling the GetMessage method of the port. If it is unable
to receive a message in the current state, it may simply ignore the call. In this case,

the sender is blocked. Later, the receiving entity may call IsMessageAvailable to find
out if there are messages to receive, and call GetMessage to actually receive them.

OutputPort Messagelndication InputPort
—

e
IsMessageAvailable
GetMessage

Figure 2.4: Handshake protocol between ports

This simple protocol adds a lot of flexibility because entities do not have to
know how messages are created or utilized, or if the receiving entity is in a state
where it can accept new messages. Because of this loose coupling between ports, it is
always possible to insert new entities between existing ones without influencing the
way messages are transferred. This greatly enhances opportunities for reuse because
many models can be changed by simply inserting new entities. Other port schemes
that do not implement flow control mechanisms are less flexible because messages
cannot be blocked between entities, e.g. [9].

Because entities know their ports, they can reference them easily, and call port
methods directly. Ports also know their owning entity, but they do not know which
method to call in case of a message indication. Especially, if an entity has more than
one port, all ports would call the same method. Therefore, a class TMessageHandler
was introduced to decouple entities and ports. A message handler may either handle a
message directly, or delegate it to the owning entity. Template based message
handlers allow to call arbitrary methods of the entity class in a type safe manner.

Although it would be possible to create special entities to count messages, or
manipulate them, the overhead would be prohibitive. Message filters that can be
installed in every port offer a more elegant solution for these kind of problems. If
filters are installed in a port all handshake calls between ports are first dispatched to
all filters before they are sent to the port or a message handler. Again, template based
filters that are derived from the TMessageFilter class can be used to delegate these
calls to other classes in a type safe manner. By installing two message filters that
work together, message transfer times between any two ports can be evaluated.

2.4 Event Handling

Event processing is the core of any event driven simulation program. Normally,
events are stored in an event list that is sorted by event time. When the current
simulation time matches the event time, the event is processed. Additionally, the
concept presented here supports hierarchical event handling.

All events must be derived from a common base class TEvent. Similar to the
usage of message handlers and filters, users can derive their own event classes.
Template based classes can be used to delegate event processing to arbitrary classes,
e.g. the entity class that created the event.

The PostEvent method of class TEntity takes an event and the event time as
parameters. Once an event has been handed over to an entity, the entity tries to find a
suitable event handler that is willing to handle the event. Events have different types.
Event handlers can either handle events of one specific type, or of all types. Event
handlers may be installed in any entity. First, entities search their own handlers to
find one that is willing to handle the event. If none is found, the PostEvent method of
the parent entity is called. This technique is applied recursively until either a suitable
handler is found, or the root of the model hierarchy is reached, which would cause an
exception. ~

Event handlers may either intercept events, or pass them on to the next higher
level of the entity containment hierarchy. An event list is just a special case of an
event handler that stores events and processes them later. In order to intercept events
not only when they are posted, but also before they are processed, handlers may add
an embedded event to the current event. When the ProcessEvent method of the
original event is executed, all embedded events are processed before the original
event.

With this concept, the parent entity is able to manipulate all events of their child
entities without modifying the children. Therefore, this scheme can be used for
conventional event processing, and for anonymous communication between entities
in different hierarchy layers.

4:PostEvent
TestModel 5:GetNextEvent
e F

3:PostEventT
i

1:PostEvent
e
/‘ézPostEvem

\\f:ProcessEvent

7:HandleProcessEvent
R

Figure 2.5: Hierarchical event handling

Model entities are special entities that include event lists. The PostEvent method
of a model simply inserts the event in the event list. The simulation control class and
the model entities work together to retrieve the next event in the event list, which is
processed by calling its ProcessEvent method. The scenario in Figure 2.5 is based on
the model that was shown in Figure 2.2. It shows a scenario where an event is posted
by the server. Because no event handlers are installed in the server and network node
entities, each entity delegates the PostEvent method call to its parent entity. That way,
the event follows the hierarchy up to the model entity, which inserts the event in the
event list. Later, the event is retrieved and executed. Because submodels may be
instalied at any part of the hierarchy, more than one event list may be used. If event
lists are distributed, the models are responsible for synchronizing them.

2.5 Other Concepts

The execution of simulation programs must be controlled. The main tasks are
initializing data structures, processing input parameters, running the simulation,
collecting and printing the results the user is interested in, and finally stopping the
simulation. The presented framework supplies a set of classes that provides a flexible
environment for simulation control. It can easily be customized by overriding
selected methods.

Additionally, the framework provides a hierarchy of random number generator
classes that implement some of commonly used algorithms [5]. Based on the random
number generators, a hierarchy of different distributions ranging from simple
uniform, binomial, or poisson distributions, up to sophisticated state-dependent
models for video sources that are needed for simulating broadband communication
networks is available.

To simplify the collection of sample data during a simulation run, a number of
meter classes are provided. These meter classes can easily be connected to any port of
an entity. Currently, two types of meters can be distinguished, meters that simply
count messages, and meters that measure transfer times, i.e. the time a message needs
to travel from one point of the model to another. For statistical evaluation of the
measured data, a hierarchy of different statistical classes is available.

Finally, the framework supports the developer by providing I/O mechanisms.
Currently, input parameters are read from a file by a keyword based parser. If desired,
it can easily be expanded by a graphical layer. The output of simulation results can be
controlled through usage of styles. Actual simulation results are marked by keywords,
and are replaced with current data in the output stream, similar to mail merge
applications. Therefore, there is no need to modify code in order to print results in a

different format.

3 Simulation of a CAN-System

In the following section, we will describe some insights that we gained while
using the library for the simulation of a CAN-System. After a short introduction into
the CAN protocol we will focus on the design of the simulation using the introduced
library framework.

3.1 The CAN protocol

The CAN protocol [4] was introduced by Robert Bosch GmbH in 1987 to allow
cheap intra-car communication over a serial bus system. The protocol regulates the
media access by applying CSMA/CA with CA abbreviating ,,Collision Avoidance*.

To allow an arbitration process the channel knows two different logical states:
,,0¢ represents the dominant state and ,,1¢ stands for the recessive state. If two stations
start sending simultaneously, each bit on the bus is compared to what the station was
willing to send. If any difference is detected, i.e. the station is trying to send a
recessive bit whilst another station is sending a dominant bit, the station that looses
the arbitration stops sending. This results in having no latency for the winning station.

serial bus

Figure 3.1: Simple two-node CAN System.

CAN systems typically consist of several electronic control units (ECUs) that are
connected by the serial bus. Inside an ECU you will find a microcontroller with the
application running on it and a CAN controller with the implemented protocol.

3.2 Elements of the CAN Model

The simulation of a system has to guarantee the functional equivalence to reality.
The CAN protocol therefore allows the decomposition of a controller net into two
basic parts: the controllers with their duty to manage messages with different
priorities, and the bus with its centralized arbitration and routing functionality. The
coresponding simulation models are depicted in Figure 3.2 and Figure 3.3,
respectively.

from application(s) to application(s)

to CAN bus from CAN bus
Figure 3.2: CAN Controller Model
Controllers consist of a sender part and a receiver part. They provide buffers for
messages that have to be sent over or have been received from the bus, respectively.
To each buffer a certain message identifier is attached. The controller decides, by

comparing identifiers, into which buffer a message is written.

from sender-part of controllers

\ \J v \ \f A
to receiver-part of controllers

Figure 3.3: CAN Bus Model

The bus model contains the only service phase of the whole model. It represents
the access of a message to the bus. Additionaly, an error generator may be switched

to the system. Bus access is gained via a N:1 multiplexer and the routing of messages
is done by a 1:N demultiplexer.

3.3 Building a hierarchic simulation model

Application Application

IENSYES
G)(G

Figure 3.4: A complete CAN-Model with two nodes.

The mapping of the model to the simulation is straightforward. A hierarchy of
entities can be derived directly from the model. During the development of the
program another great benefit of the object-oriented approach became obvious. The
library supports an incremental development process. Due to the encapsulation of the
entities and the framework which is provided by the library, it is always possible to
build a reduced model (single controllers, the bus) which can be tested separately.
Later, individual entities are combined to hierarchical entities, and their ports are

connected. This has the advantage that an executable program is available during
every stage of the development process. The need to integrate a large and complex
system in one step does not exist. Since the individual entities are already tested,
testing of the whole program can be reduced to validating interactions between
entities.

During the implementation of the program, we could easily reuse the framework
provided by the library. The queues, service phases and generators could either be
used directly from the library, or had only to be slightly modified (like the Mux and
Demux classes). These modifications could easily be accomplished by deriving new
classes from the library entities, and overriding specific methods.

An extension of the presented model by a communications software layer is
currently under development. Therefore, we see the CAN model as a basic abstraction
and use the input-ports of the controllers as interface to the overlaying software. The
developper of the software model does not need to know how the CAN model works,
he just ,,plugs* the CAN model to his model and then is able to run a whole system
simulation.

4 Summary

In this paper, we presented a flexible object-oriented simulation framework. One
of the main concepts of the framework is complete support for hierarchical
decomposition of simulation models including hierarchical event processing. This
enables direct mapping of complex simulation models to simulation programs, and
also supports iterative refinement of models as the design evolves. The chosen
abstractions are very flexible and can even be used for distributed simulation [11].

The presented framework was used for the simulation of CAN systems. Due to
the strict encapsulation and the clear software architecture reuse of model
components and whole submodels was supported. Iterative development of complex
simulation programs has been encouraged because model components could be
implemented and tested separately. Modifications were easy to implement because
they were just another incremental step in the development cycle.

5 References

[1] Belanger R.E.. MODSIM II: A Modular, Object-Oriented Language,
Proceedings of the 1990 Winter Simulation Conference, New Orleans, LA,
1990, pp. 118-122.

21 Booch G.: Object Oriented Analysis and Design with Applications, 2nd
Edition, Benjamin Cummings, Redwood City, CA, 1994.

3] Booch G.: The Booch Method: Notation, Rational, Santa Clara, CA, 1992.

(4]
[5]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

[13]

Robert Bosch GmbH: CAN Spezifikation 2.0, Stuttgart, 1991

L’Ecuyer P.: Random Numbers for Simulation, Communications of the ACM
33, no. 10, 1990, pp. 85-97.

Ellis M.A., Stroustrup B.: The Annotated C++ Reference Manual, Addison-
Wesley Publishing Company, Reading, MA, 1990.

Kocher H.: Design and Implementation of a Simulation Library Using Object-
Oriented Methods, Dissertation, Institute of Communications Switching and
Data Technics, University of Stuttgart, Germany, 1993. [In German].

Kocher H., Lang M.: An Object-Oriented Library for Simulation of Complex
Hierarchical Systems, Proceedings of the Object-Oriented Simulation
Conference (00S’94), Tempe, AZ, 1994, pp. 145-152.

Mak V.W.: DOSE: A Modular and Reusable Object-Oriented Simulation
Environment, Proceedings of the SCS Multiconference on Object-Oriented
Simulation, Anaheim, CA, 1991, pp. 3-11.

Melamed B., Morris R.J.T.: Visual Simulation: The Performance Analysis
Workstation, IEEE Computer 18, no. 8, 1985, pp. 87-94.

Necker T.. An Object-Oriented Library for Distributed Simulation,
Proceedings of ASIM’94, Stuttgart, 1994, pp. 235-240. [In German]

Vaughan P.W., Newton D.E., Johns R.P.: PRISM: An Object-Oriented System
Modeling Environment in C++, Proceedings of the SCS Multiconference on
Object-Oriented Simulation, Anaheim, CA, 1991, pp. 32-39.

Zheng Q., Chow P.: EXsim: A General Purpose Object-Oriented Environment
for Descrete-Event Simulations, Proceedings of the 1993 Western Simulation
Multiconference, La Jolla, CA, 1993, pp. 15-21.

