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Abstract—Explicit Congestion Notification (ECN) is a mecha-
nism in the Internet that allows network nodes to mark packets
instead of (early) dropping them in case of overload. A receiver
will detect this signal and inform the sender about the congestion
situation. The current ECN specification does only allow one
feedback signal from the receiver to the sender per Round-Trip
Time (RTT). In case a network node is marking more than
one packet per RTT, the sender will not notice. Up to now,
congestion control using this signal as an input parameter was
designed to not react more than once per RTT time. However, new
mechanisms like Congestion Exposure (ConEx) or Data Center
TCP (DCTCP) need a more accurate feedback than one signal
per RTT. This paper proposes two approaches to address this
problem by reusing the ECN TCP header bits without allocating
further option space. Both approaches are developed based on
very different protocol design choices, which makes it hard to
evaluate both approaches against each other. This paper takes
a first approach for evaluation based on simple simulations.
Further evaluations in more realistic scenarios and a Linux kernel
implementation are currently work in progress.

I. INTRODUCTION

Explicit Congestion Notification (ECN) is a mechanism
that was standardized in 2001 in RFC 3168 [1] (which
obsoletes the experimental RFC 2481 from 1999) by the
Internet Engineering Task Force (IETF). Today, most operation
systems implement ECN but it is hardly used and very rarely
supported by network nodes. With ECN, network nodes have
the possibility to mark packets instead of dropping them in
case of overload. To mark packets before a queue overflows,
an Active Queue Management (AQM) algorithm needs to be
implemented in the network node. The proper configuration
of such an AQM strongly depends on the traffic conditions
and thus is an open problem [2]. But in fact, the use of ECN
could avoid packet losses due to congestion which would be
beneficial for the network performance.

Congestion Exposure (ConEx) is a current activity in the
IETF which is based on loss and ECN as a congestion signal.
The ConEx working group has been formed in 2010 based on
previous research work on the re-ECN mechanism [3]. ConEx
aims to re-insert congestion information into the network by
a sender. This congestion information given by loss and ECN
is already known by the sender due to existing mechanisms
in the Transmission Control Protocol (TCP). Exposing this
information to the network can be regarded as estimation
about the expected congestion on the network path. Based

on this information a network node can introduce policing at
the network ingress to management congestion later in the
network. With a deployment of this additional functionality,
ConEx will as well incentive ECN deployment. With the
current ECN, only one congestion notification per RTT can
be fed back from the receiver to the sender. In case of strong
(short-time) congestion this is not sufficient to estimate the
actual level of congestion on the link.

Another recent development in congestion control is
DCTCP – an approach addressing the TCP incast problem
in data centers proposed by Alizadeh et al. [4]. DCTCP is
based on ECN and proposes a specific AQM configuration
with a very low marking threshold to keep queues empty when
long-lived flows are present. At the same time this mechanism
will provide sufficient buffer space to avoid losses when many
small flows hit the same link concurrently. Using such a
marking scheme will increase the number of ECN marks. For
DCTCP congestion control it is proposed to take the number
of marks (within one RTT) into account when decreasing the
sending rate. This is done to keep the link utilized. Again, the
more accurate number of marks in one RTT would be needed.

Moreover, in congestion control research discussions re-
cently started if the decrease behavior of the sender can be
differently for ECN than for loss (see mailing list of the
Internet Congestion Control Research Group (ICCRG) of the
Internet Research Task Force (IRTF) [5]). The number of
markings observed in one RTT could be a valuable input
information for such new congestion control schemes.

We, the two authors of this paper, did work on these two
different problems separately – ConEx and DCTCP – but
discovered the same shortcoming with the ECN mechanism
as it is standardized by the IETF. To address this problem we
are aiming to replace the current ECN feedback mechanism
and reuse the assigned ECN/ECN-Nonce bits in the TCP
header, as such a new scheme should be able to fully replace
the current one. An additional TCP handshake negotiation,
that is backward compatible with the current ECN handshake
negotiation mechanism, was already proposed by [3] and is
further explained in [6]. Possible approaches to realize the
actually feedback mechanism are discussed in this paper.

After some initial discussion, we, the two authors, ended
up with two different solutions how to actually feed the ECN
information back in a more accurate way. A theoretically
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Fig. 1. Classic ECN Feedback Scheme

analysis of requirements on resilience, timeliness, integrity,
accuracy and complexity, is discussed in [6]. This analysis
could not provide a final evaluation. While the one approach
can provide a better accuracy, the other is more resistant
against (consecutive) losses of acknowledgements (ACK).

In this paper we provide further evaluation results by some
initial simulations with different probabilities of congestion
markings and ACK losses. These results give insights on the
characteristic of the different protocol design choices. This is
still work in progress. Currently, we are implementing both
approaches in the Linux kernel. This will provide a better
study on implementation complexity. Furthermore, we will
uses this code in more realistic simulations, where the marking
and loss patterns will be determined by real TCP connections
using a certain congestion control and different load scenarios.
The results in this paper show that both approach over-
/underestimated congestion in certain (over-)load situations.
The proposed codepoint-based approach performs well in an
Internet-like scenario and as such is a good candidate to
provide a more accurate ECN feedback.

This paper is structured the following: The next section
explains background information on the current ECN feedback
scheme and both newly proposed approaches. Section III
explains the simulation setup and scenarios and Section IV
provides first evaluation results. Section V draws conclusions
on the current state of work and presents next steps.

II. ECN FEEDBACK SCHEMES

A. Classic Explicit Congestion Notification

Explicit Congestion Notification (ECN) is a TCP/IP mech-
anism in the Internet that allows network nodes to mark
packets instead of (early) dropping them. The ECN scheme
as specified in RFC 3168 [1] we call the classic ECN.

In the TCP handshake an ECN sender can negotiate for
ECN support. Then, if the receiver is ECN capable, a sender
can mark each IP packet as ECN-capable transport (ECT) by
setting one of the two IP ECN bits. Setting one or the other
bit leads to two flags, the ECT(0) or ECT(1), which are used
with ECN-Nonce to provide an integrity mechanism.

If an IP packet is marked as ECT(0) or ECT(1), a network
node can mark this packet as Congestion Experienced (CE)
by setting the other IP bit. A network node will use an AQM
mechanism like e.g. Random Early Detection (RED) to mark
packets before the queue overflows. RED calculates a marking
probability depending on the queue length. If the queue grows,

which means the congestion level increases, each packet will
be marked with an increasing probability.

If a classic ECN receiver sees a CE flag, it will set the
ECN-Echo bit in the TCP header of the ACK. The ECE
bit is then set in all subsequent ACKs until a packet with
the Congestion Window Reduced (CWR) bit set in the TCP
header is received from the sender to acknowledge the ECE.
Thus for one received CE a whole RTT of ECE marked
packets will be sent. During this period additional received CE
marks will have no influence. The original sender will set the
CWR bit after reducing the sending rate/congestion window
on reception of the first ECE bit as shown in Figure 1. The
sender will not reduce more than once per RTT. ECN-None [7]
uses one more TCP bit to signal a one-bit Nonce Sum (NS),
which counts the number ECT(1) flags received.

To negotiate a more accurate scheme but keep backwards
compatible to the classic ECN, we set the NS in the initial
SYN of TCP handshake additionally to the ECN negotiation.
The NS bit is currently unused in the SYN. Further details
are explained in [6]. All TCP and IP bits used by ECN and
ECN-Nonce are shown in Figure 2.
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B. One Bit Scheme

With the One Bit (1B) feedback scheme an ECN receiver
will set the ECE bit only once when a CE flag was received.
The ECE is set in the corresponding acknowledgment. Thus
the sender is able to not only detect the number of CE
markings but also the number of acknowledged payload bytes
of the marked packet. To provide this additional functionality
the 1B scheme uses a specific ACK’ing scheme.

Most TCP endpoints will only send one ACK for every
second data packet received, so-called delayed ACKs [8]. The
receiver will acknowledge the payload bytes of two packets
within one ACK. In contrast the 1B scheme needs to send
separate ACKs for CE marked packets and not-marked once.
Whenever an CE flag is received and the previous packet
was not CE marked and not ack’ed yet, the endpoint has to
send a separate ’late’ ACK for the previous packet. Similar
action should be triggered when the currently received packet
is not CE but the previous was and it not ack’ed yet. Thus an
endpoint needs to send a late ACK with the ECE bit set and
acknowledge the new packet separately (and potential delay
it until the next packet arrives). A similar scheme has been
proposed by Alizadeh et al. with DCTCP [4]. For the 1B



ECN feedback scheme the proposed mechanism was extended
to send a late ACK for previously unack’ed data when the
congestion status changes.

With the 1B scheme the loss of one ACK (having the ECE
bit set) can cause an information loss. To provide a slightly
higher reliability the CWR will be set in the subsequent ACK.
If now the ACK with the ECE bit set gets loss, the subsequent
ACK with CWR set will acknowledge all bytes of the previous
(lost) ACK and the current ACK. An sender seeing such an
ACK cannot exactly know how many bytes where supposed
to be ack’ed by the previous, lost ACK with ECE set. Thus
the sender might account all bytes of the current ACK as CE
marked. We propose to account the number of ack’ed minus
the Maximum Segment Size (MSS) as at least one packet need
to be not CE marked if only CWR but not ECE is set.

i f (ACK & ECE)
a c c o u n t ( a c k e d b y t e s )

e l s e i f ( (ACK & CWR) & ! ( pre ACK & ECE ) )
a c c o u n t ( a c k e d b y t e s − MSS)

To be even more conservative, all ack’ed bytes could also
be accounted if two consecutive ACK losses or more have
been detected. Such a detection could be done if the ack’ing
scheme is known, as e.g. TCP delayed ACKs where at least
every second data packet should be acknowledged. Otherwise,
if more than two ACKs in a row get lost, the endpoint
might still miss a congestion notification. If ECN is used as
an input for congestion control, the endpoint will not adapt
its sending appropriately. If the congestion is persistent, the
number of ECN marks will increase and the probability that
the feedback is received by the endpoint increases as well.
This will preclude the escalation to a congestion collapse. If
the congestion situation is missed completely, potentially other
flows using the same link have reduced their sending rate based
on their feedback information. Thus the flow which missed
the congestion feedback has now a higher sending rate then
the other flows on the same link. But this also means that this
flow has a larger marking probability when the next congestion
situation occurs as more packets of this flow will be on the
link. In average the flows will still share the link equally.

The 1B uses only the ECE and CWR but not the NS. Such
it is compatible with ECN-Nonce. The 1B scheme allows a
more accurate ECN feedback and provides even an additional
functionality to reconstruct the number of CE marked payload
bytes. The 1B does not guarantee a reliable ECN feedback if
ACK loss occurs. Whereas the classic ECN scheme provides
reliably one feedback signal per RTT, as the reception need to
be confirmed by the CWR bit. Due to the new proposes ACK
scheme the number of ACKs might increase compared to the
usual delayed ACK scheme. This can decrease the network
performance slightly depending on the congestion level.

C. Codepoint Scheme

With the Codepoint (CP) scheme all three TCP header bits
(ECE, CWR, NS) are used as one field. Such a scheme has
first been proposed by Briscoe et al. with re-ECN [3]. Briscoe

et al. proposed to use this field to feedback a 3-bit counter of
all CE marks received during the connection.

We extend this idea by not sending the CE counter value
directly but using the header field to encode 8 codepoints.
In addition, we introduce a counter to sum up the number
of ECT(1) codepoints received. We call these counters the
Congestion Indication (CI) counter and the ECT(1) counter
(E1), respectively. The codepoints are used to encode either
the current CE counter value or the current ECT(1) counter
value. The codepoints are shown in Figure I.

TABLE I
CODEPOINTS

# TCP ECN field CI E1 Description
0 000 0 – CI is 0, no info on E1
1 001 1 – CI is 1, no info on E1
2 010 2 – CI is 2, no info on E1
3 011 3 – CI is 3, no info on E1
4 100 4 – CI is 4, no info on E1
5 101 – 0 E1 is 0, no info on CI
6 110 – 1 E1 is 1, no info on CI
7 111 – 2 E1 is 2, no info on CI

Using the CP scheme, a ECN receiver will feed back the
current CI value by default in every ACK, using the codepoints
#0 to #4. Only if an ECT(1) is received the E1 value will be
signaled, using codepoint #5, #6 or #7, once in the next ACK.
Thus an ECN sender can trigger the signaling of the current
E1 value by sending an ECT(1) flag. If the sender sets an
ECT(1) flag but a network node overwrites it by the CE flag,
the receiver will not notice the ECT(1) anymore and will, of
course, not signal the E1 value. In this case the ECN-Nonce
sender will need to re-synchronize anyway.

The CP scheme uses the NS bit additionally to the ECE
and CWR but includes at the same time a way to provide
an integrity check as proposed by ECN-Nonce in RFC 3540.
This RFC is experimental but is the only proposal to provide
integrity in ECN. Such an mechanism is mainly needed if
ECN is used for congestion control as the receiver can have
an advantage by not feeding back the CE marks.

III. SIMULATION SETUP

In this first setup, we want to investigate the characteristic
behavior of both proposals depending on the number of con-
gestion marks and the number of ACK losses. Both schemes
provide a more accurate but not exact feedback of the number
of CE marks. We used a simple base scenario as illustrated
below in Figure 4. A sender is sending packets at a constant bit
rate continuously during the whole simulation. With the shown
simulation results, all packets are equal sized as most likely
in the Internet for an individual one-way data transmission.

The packets are sent over a forward channel and marked
with a probability pmark. The receiver, in case of the CP
scheme, maintains the CI and E1 counter and, in both cases,
acknowledgments are sent with the respective TCP header
bits set. Usually only every second packet is acknowledged.
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Fig. 3. Simulation results of 1-bit (1B) scheme

In case of B1, a different ack’ing scheme is realized when
the ECN state changes. Additionally, the receiver maintains
a counter CErcv that counts the total number of marked
packets during the whole simulation. On the feedback channel
the acknowledgements have an loss probability of ploss. The
sender will reconstruct the number of marked bytes. For the
evaluation, we compare the estimated number of marked bytes
at the sender CEsnd with the exact number CErcv.

Sender Receiver
p_marking

p_loss

- equal sized packets
- CE_snd

- delayed ACKs
- CE_rcv

Fig. 4. Simple simulation scenario

In the Internet the predominant flows are TCP flows using
some kind of congestion control. That means if a queue
is overloaded all TCP flows using the respective link will
react to the congestion signal within one RTT. The actual
marking/loss pattern will also strongly depend on the used
AQM mechanism and its parameters. This can lead to burst
of congestion marks/losses. We modeled this scenario with a
two state Gilbert Model. We have a certain ACK loss/marking
probability in each state. In the scenarios evaluated below,
the ACK loss probability and the marking probability always
have the same value, which models the same congestion
level on the forward and feedback channel. In state G (good)
a packet/ACK has a marking/loss probability of pG and a
probability of g to stay in this state. Respectively, in state
B (Bad/Burst) there is a marking probability of pB and a
probability of b to stay in this state. That means

State G (good): ploss = pmark = pG; G→ B: 1− g
State B (bad/burst): ploss = pmark = pB; B → G: 1− b

Based on this model we evaluated two scenarios. Scenario
1 where we always stay in state G with a variable, Gaussian
marking/loss probability of pG.

Scenario 1: pG = x, gB = 1.0, b = 1.0 and g = 0.0.

In scenario 2 a probability b = 0.5 in the state B, where all
packets get marked (pB = 1.0), will give us a mean burst size

of 2. This provides a critical scenario to investigate where
two consecutive ACK losses appear. We evaluated this for
a low marking/loss probability pG = 0.01 in the non-bursty
state G and a variable probability to enter the burst state B,
that means with different burst accumulations.

Scenario 2: pG = 0.01, gB = 1.0, b = 0.5 and g = x.

IV. EVALUATION

We evaluated the accuracy of the proposed more accurate
ECN feedback schemes by monitoring the percentage of over-
/underestimation of the actually congestion level, given as
positive/negative % of error in all figures. For both schemes
we evaluated one variant without ACK loss detection, la-
beled as ’simple’ and a more conservative variant, labeled as
’conservative’ as explained in section III. This variant always
overestimates as loss ACKs are assumed to carry marks.

Figure 3 shows the evaluation of the 1B scheme. We also
evaluated the ACK amplification, shown by the blue dots,
as this scheme requires a specific ACK response scheme.
Figure 3a shows scenario 1. The ACK amplification has a
maximum at a marking probability of 0.5 percent. This is
expected because the worst case is if every second packet
is marked and thus every single packet would need to be
ACK’ed separately (which means there are no delayed ACKs
at all anymore). In our simulation with a Gaussian marking
probability of 0.5, there is an ACK amplification of about 34%.
Looking at the simple 1B variant, it overestimates when the
marking/loss probability is smaller than 0.5 and underestimates
otherwise. This is due to the increasing congestion marking
probability. As more ACKs carrying feedback information
as larger the chance to lose an ACK that holds valuable
information. Losing two consecutive ACKs already will in-
duce a feedback information loss. This can be seen more
clearly in Figure 3b where the percentage of error is coded
with different colors over different (Gaussian) ACK loss and
different independent ECN marking probabilities. In scenario
2, shown in Figure 3c, we have burst markings/losses with
mean length of 2. Here the ACK amplification increases and
the (under)estimation gets worse with an increasing number
of ACK loss bursts.
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Fig. 5. Simulation results of codepoint (CP) scheme

Figure 5 shows the evaluation results of the codepoint
(CP) scheme. The characteristic is strongly different from the
1B scheme. With the simple variant the estimation is quite
accurate up to a certain ACK loss/congestion marking proba-
bility and then it always underestimates. In scenario 1 it only
underestimates with an high loss/marking level above 20%
but in scenario 2 this threshold is much lower. In comparison,
the B1 scheme underestimates less. Underestimation can be a
more serious problem if e.g. all congestion markings within
one RTT are missed completely. In contrast, the conservative
variant strongly overestimates but becomes more accurate
with high ACK loss/congestion marking probabilities. In the
Internet we expect low loss/marking probabilities, where the
CP scheme performs well as it can be seen by the green area
in Figure 5b. In a data center scenario we expect a very low
ACK loss probability but eventual high marking probabilities
due to new congestion control/AQM schemes, like DCTCP.
For this scenario both schemes perform sufficiently well.

It might be valuable to e.g. use a more conservative esti-
mation for congestion control that ensures to be always TCP-
friendly or even less aggressive than TCP. And at the same
time one could use the simple estimation variant for e.g.
ConEx, where more accurate information are needed but other
action can be taken if the estimation is not good enough.

V. CONCLUSION

In this paper we presented two schemes to achieve a
more accurate ECN feedback. In various areas of research
limitations of the current ECN feedback scheme were detected.
We addressed this problem by reusing the existing ECN/ECN-
Nonce bits in the TCP header. Both approaches came up based
on different preliminary work and have been evaluated in some
first simulations. An implementation in the Linux kernel and,
based on this, more realistic simulations are work in progress.

The current first evaluation results show that the proposed
codepoint mechanism works well in an Internet-like scenario
with low congestion as well as in a data-center-like scenario
with potentially large number of congestion markings but
a very low ACK loss rate. As ACKs are not transmitted
reliable, a scheme like the proposed codepoint (CP) scheme,

that retransmits counter values with every ACK, seems to be
more robust and as such more suitable. But it still does not
provide reliable ECN feedback. To improve the robustness,
new counter values could be delayed to not increase the
counter within one ACK too much.

The 1-bit (1B) scheme provides an additional functionality
by not only announcing a CE mark but also the byte-size of
the marked packet. This is valuable information for ConEx
and also for future congestion control scheme. Optionally,
also with the CP scheme a different ack’ing scheme could
be used to provide byte-wise feedback. But this would be
orthogonal to the design choices to 1) not rely on the delivery
of one certain acknowledgment and 2) not limit the use to
one specific ack’ing scheme. Such an ack’ing scheme would
be to implemented by the receiver and as such it is not under
control of the sender. This might be not desirable as sometimes
other ack’ing scheme are already implemented today e.g. ACK
accumulation by network device cards.

Currently, we see the CP scheme as good candidate for
more accurate ECN feedback. To arrive at a final conclusion,
we will do further evaluations in more realistic scenarios
and investigate effects on current and future TCP congestion
control.
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