
Modeling and Performance Evaluation of SCTP
as Transport Protocol for Firewall Control

Sebastian Kiesel and Michael Scharf

Institute of Communication Networks and Computer Engineering
University of Stuttgart, Germany

{kiesel,scharf}@ikr.uni-stuttgart.de

Abstract. Firewalls are a crucial building block for securing IP net-
works. The usage of out-of-band-signaling protocols (such as SIP) for
VoIP and multimedia applications requires a dynamic control of these
firewalls, which can be implemented using the Simple Middlebox Con-
figuration Protocol (SIMCO). In this paper, we study the performance
of SCTP and TCP as transport protocols for the transaction-based sig-
naling protocol SIMCO, which requires small end-to-end delays. We pre-
sent an analytical model in order to quantify the impact of head-of-line
blocking in SCTP. Both, the model and measurements reveal that SCTP
can significantly reduce the SIMCO response times by leveraging trans-
mission over multiple parallel streams. While a few SCTP streams can
almost completely avoid head-of-line blocking, our measurements show
that TCP may suffer from rather large end-to-end delays.

1 Introduction

For quite a long time, firewalls have been in use to protect private networks from
unwanted access from the Internet. The simplest type are packet filters.

So-called “Next Generation Networks” (NGN) are an emerging technology
intended to replace the ISDN based telephone networks by Session Initiation
Protocol (SIP) based “Voice over IP” (VoIP) technology in the future. They dif-
fer from traditional IP networks by deploying stateful application layer entities
such as SIP proxies in the core network. Because of higher security requirements,
firewalls are not only used as a customer premises equipment, but also for screen-
ing at the interconnection of different operator’s networks. Due to the dynamic
nature of SIP, these firewalls have to take part in the session signaling. As traffic
of many simultaneous calls has to be inspected, performance is an important
issue, in particular the call setup delay to which the dynamic configuration of
the firewalls is a contributing factor.

The Stream Control Transmission Protocol (SCTP) has been designed as a
transport layer protocol especially for signaling applications. Compared to TCP,
SCTP adds a multiplexing layer – the so-called streams – on top of its associa-
tions. As in-oder delivery of messages is only guaranteed within the same stream,
the delaying effect of so-called “head-of-line blocking” can be reduced if the ap-
plication software can make use of several streams. In this paper, we show how
this feature can be used in time-critical firewall control signaling applications.



While some studies on SCTP performance exist, to the best of our knowledge
the end-to-end delay of signaling messages over multiple streams has not been
addressed so far. We present an analytical model and measurement results to
quantify the impact of head-of-line blocking in SCTP. A related work [1] presents
simulation results for the transmission delay of SIP messages transported over
UDP, TCP, or SCTP, respectively. Unlike our work, this study only uses one
SCTP stream with reliable unordered service and leaves message reordering up
to SIP. A recent work [2] analyzes the usage of SCTP for a parallel computing
message passing middleware and shows that multiple streams can improve the
transmission delays. However, this work is based on measurements only and uses
messages that are orders of magnitude larger than typical signaling data.

The remainder of the paper is organized as follows. In Section 2, we dis-
cuss the interaction of SIP-based VoIP signaling and firewalls. We introduce
the IETF MIDCOM architecture and the SIMCO protocol that can be used
for firewall control. Section 3 discusses which transport protocols can be used
for SIMCO. We give a brief overview of SCTP and present the basic idea how
SIMCO can leverage SCTP’s multiple streams feature. Section 4 proposes an
analytical model of the head-of-line blocking in SCTP for signaling traffic. In
Section 5, we present a prototype implementation of “SIMCO over SCTP” and
performance measurement results. Finally, Section 6 concludes this paper.

2 Securing IP Telephony Networks by Firewalls

2.1 Firewall Policies and Out-of-band Signaling

A “firewall” is one or a group of network elements enforcing an access control
policy on the traffic at the border between network domains with different se-
curity levels and requirements. The access control and forwarding functions can
be implemented on different layers of the IP protocol stack, e. g., in the applica-
tion layer by so-called proxies. In contrast, packet filters are routers that decide
whether to forward a packet by comparing header fields of IP and transport

200 [OK]
BYE

hook
on

RTP Session

ACK
200 [OK]

phone

off
hook

rings180 [Ringing]
INVITEdial

+ SDPB

+ SDPA

RTP
para−

meters

user B
user A

Fig. 1. Negotiation of RTP pa-
rameters by means of SIP/SDP

RTP

SIP

SIPSIP

SIP

roaming
user

Fig. 2. Signaling messages and media streams may
travel on different paths through the network



layers with their access control lists (ACL). Often, a policy with respect to ap-
plication layer services can be implemented by simply comparing the transport
layer destination port numbers with a static ACL, because of the well-known
port numbers concept that most “traditional” Internet services follow.

However, some applications such as many VoIP solutions differ by using
different protocols for the signaling and the transport of the actual user data
(speech). In the considered scenario, the RTP (Realtime Protocol) media stream
parameters such as codec and bit rate as well as IP addresses and UDP port
numbers are dynamically negotiated using SDP (Session Description Protocol)
messages embedded in the SIP signaling (Fig. 1). Therefore, a static packet
filter configuration would either block all RTP streams or would have to allow
all UDP traffic, rendering the firewall’s protection almost useless [3]. As signaling
messages and media streams may travel on different paths through the network
(e. g., to roaming users, see Fig. 2), firewall traversal becomes even more difficult.

2.2 Architectures for Firewall Control – IETF MIDCOM

There are several approaches to solve the SIP/RTP firewall traversal problem [3].
A solution is to dynamically add rules to the packet filter by means of a signaling
protocol. This can be done in two ways. Path-coupled firewall signaling such as
the IETF NSIS architecture [RFC 4080] sends messages along the future media
path, which request to open so-called “pinholes” in all packet filters on the path.

In contrast, when using path-decoupled signaling, SIP messages are sent via
SIP entities such as back-to-back user agents (B2BUA, i. e., call-stateful SIP
proxies), which control the packet filters on the media path. For the signaling
between B2BUA and packet filter, the IETF MIDCOM (MIDdlebox COMmuni-
cation) architecture [RFC 3303] can be used. The term “middlebox” refers to the
generalized concept of network elements that perform “functions other than the
normal, standard functions of an IP router” [RFC 3234], such as packet filters
and network address translators (NAT).

Fig. 3 shows one possible MIDCOM application scenario with SIP. The fire-
wall protecting domain “A” consists of the packet filter and the B2BUA. A static
rule in the packet filter allows SIP signaling to be sent via the B2BUA. Once the
B2BUA has decided to allow the establishment of a specific call, it extracts the

RTP

SIP

interface
protocol
MIDCOM

packet filter
("middlebox")

SIMCO
MIDCOM/

SIP UA user BSIP UA user A

B2BUA
SIP

Domain A (to be protected by firewall) Domain B (e.g., Internet)

Fig. 3. The MIDCOM architecture



RTP parameters from the SIP/SDP messages. It sends “Policy Enable Rule”
(PER) requests to the the packet filter in order to open two corresponding “pin-
holes” (one per direction) for the call duration. The interworking of SIP and
MIDCOM signaling is illustrated by Fig. 4. A more detailed description includ-
ing considerations of the behavior under error conditions can be found in [3].

2.3 SIMCO

MIDCOM is not a specific protocol but a framework architecture, including an
abstract protocol semantics [RFC 3989] that can be implemented in several ways,
e. g., by means of a suitably crafted SNMPv3 MIB. An alternative approach is
the SIMCO (SImple Middlebox COnfiguration) protocol [4], a transaction based
protocol using simple binary TLV message encoding. A transaction consists of
a request from the SIMCO agent (e. g., embedded in the SIP B2BUA) and a
positive or negative reply from the middlebox. SIMCO transactions are used
to create, modify or delete so-called “policy rules” at the middlebox, which are
the generalized concept of pinholes in packet filters, address bindings in NATs,
etc. They are described by various address parameters. Policy rules are soft
states, i. e., they are associated with a lifetime attribute and will be removed
automatically from the middlebox if the lifetime is not refreshed in time.

All SIMCO messages belonging to one transaction are identified by means of
a transaction identifier (TID), which is uniquely assigned by the SIMCO agent.
When a SIMCO agent asks the middlebox to establish a new policy rule, e. g.,
by means of a PER (Policy Enable Rule) request, the middlebox creates the

SIP user BSIP user A SIP B2BUA

B(+SDP )

(+SDP)A

transaction
response
time R

MIDCOM

Answer
signal
delay A

BRTP
PER RQ

PER PR

RTPA
PER RQ

PER PR

packet filter

RTP/RTCP

200 OK

ACK ACK

200 OK

INVITE (+SDP)

100 TRYING

180 RINGING
180 RINGING

INVITE 

A

Fig. 4. Interworking of SIP and MIDCOM/SIMCO signaling



rule and assigns a unique policy rule identifier (PID) to it. The PID is returned
to the agent, e. g., in the PER positive reply. The agent uses the PID in later
transactions, such as PLC (Policy Lifetime Change) for refreshing the softstate
or deleting a rule (new lifetime = 0), to refer to this specific policy rule (Fig. 5).

In addition to the transactions explained above, SIMCO specifies transactions
for the management of a SIMCO association and asynchronous notifications to
be sent from the middlebox to the agent, e. g., if a policy rule is deleted because
of expired lifetime. The SIMCO specification [4] assumes that all transactions
between an agent and a middlebox are transported in one SIMCO association
over a single persistent TCP connection. Both are established in advance in order
to avoid transaction delays caused by the TCP and SIMCO handshake.

As shown in Fig. 4, the response time R of the second PER transaction
contributes to the answer signal delay A, which is inconvenient for the users and
should therefore be minimized [5]. R consists of the local processing time in the
middlebox plus the message transmission delay. In the remainder of the paper,
we will focus on the latter effect and investigate in detail how to minimize the
transmission delay by using SCTP as transport protocol for SIMCO.

3 Transport Protocols for Firewall Control

Traditionally, there have been two transport layer protocols in the Internet pro-
tocol suite. The Transmission Control Protocol (TCP) provides connection ori-
ented, reliable transmission. It is the default transport protocol for SIMCO. The
User Datagram Protocol (UDP) offers connectionless, unreliable transport and
is therefore unsuitable for SIMCO. The Stream Control Transmission Protocol
(SCTP) has been developed as a third transport layer protocol for IP, especially
for signaling applications. It will be introduced briefly in the next section before
its applicability for SIMCO will be investigated.

MIDCOM/SIMCO agent (e.g., SIP B2BUA) Middlebox (e.g., packet filter)
in middlebox
Rule timers

synchronousA R Eventule (TID=7626, PID=37, Lifetime=0)

(TID=1,PID=37)
PER (IP1, IP2, TCP/UDP/..., Port1, Port2, ..., TID=1, Lifetime)
PER PR

PID 37

(TID=3,PID=13,new Lifetime=0)
olicy Rule DeletionP (TID=3)

PLC

olicyP ifetimeL C hange
olicyP Lifetime C hange ositiveP eplyR

(TID=2,PID=13,new Lifetime)
(TID=2)

olicyP Enable ule ositivePR eplyR (TID=0,PID=13)
PID 13(IP1, IP2, TCP/UDP/..., Port1, Port2, ..., TID=0, Lifetime)Policy nableE uleR

Fig. 5. SIMCO transactions create, modify and delete policy rules



3.1 Stream Control Transmission Protocol (SCTP)

SCTP [RFC 2960] has originally been designed as a part of the SIGTRAN archi-
tecture [RFC 2719] for the transport of SS7 [6] PSTN/ISDN telephony signaling
over IP. While this rather special purpose is achieved by adaptation layers (e. g.,
M3UA [RFC 3332]) on top of it, SCTP itself has been designed as a generic
transport protocol for IP networks, optimized for signaling applications. It has
mechanisms for deployment in environments with high reliability and security
requirements, such as “multihoming”, i. e., support for having endpoints with
several physical network interfaces as well as mechanisms to protect from denial-
of-service and blind spoofing attacks [7].

With respect to user data transmission, SCTP provides a reliable datagram
service. Similar to UDP, SCTP preserves the boundaries of upper layer protocol
(ULP) messages. Therefore and different to TCP, no byte counters or frame de-
limiters are needed in the ULP. Unlike UDP, SCTP detects packet loss, duplicate
packets or bit errors and retransmits or discards the respective packets. SCTP
also uses flow control and congestion control algorithms similar to those of TCP.

SCTP allows to split one association (SCTP term for connection) into up to
65536 logical subchannels per direction, so-called streams. Each user message is
transmitted in one of these streams. SCTP ensures in-order delivery within the
same stream. If one message is lost or corrupted in the network and has to be
retransmitted, only the corresponding stream is subject to head-of-line blocking
whereas messages of other streams can still be delivered. This is illustrated in
Fig. 6: Using SCTP, message #4 may be delivered to the ULP before message
#3 has been retransmitted, as it is in another stream. Message ordering can even
be disabled completely using the “unordered” flag.

Using one association split up into several streams – instead of using multiple
associations bearing only one stream each – improves the efficiency of the TCP-
like fast retransmit algorithm as it is applied on the aggregate message flow.

3.2 SIMCO over SCTP

When designing “SIMCO over SCTP”, a very important problem is how to
leverage SCTP’s multiple streams feature, in order to reduce the impact of head-

14 23

4

1
2
3

3
4

1
2

3’

4
3

2
1

1
2

4
3

12343’

Fig. 6. Illustration of head-of-line blocking: one TCP connection (left) vs. one SCTP
association with 3 streams (right)



of-line blocking. This can be further divided into two questions: First, how many
streams to use for good performance results while not wasting resources. This
will be investigated in detail in the later sections of this paper.

The other problem is how to distribute SIMCO messages evenly over several
streams while retaining causality for SIMCO. It is important that the transport
layer protocol preserves the order of transactions that refer to the same policy
rule. For example, it would be undesirable if a SIMCO agent requested a policy
rule and immediately afterwards canceled it, but the delete message was delivered
to the middlebox before the enable message. However, there is no requirement
that prohibits reordering of SIMCO messages that refer to different policy rules.

Our basic idea is therefore to have several bidirectional stream pairs within
the SCTP association. Two requirements shall be fulfilled: (1) All SIMCO mes-
sages that belong to one transaction shall be sent over the same pair. (2) All
transactions that refer to the same policy rule shall be sent over the same pair.

As transactions always consist of a request sent by the agent and a reply sent
by the middlebox, requirement (1) can be implemented in a stateless fashion:
The middlebox sends replies on the same stream number as the corresponding
request was received on. Requirement (2) can be fulfilled in the following way:
Initially, the agent may use any strategy (e. g. round robin) for choosing the
stream number on which a message requesting a new policy rule is to be sent.
As described in Section 2.3, the middlebox assigns a unique PID to the new policy
rule and returns it to the agent. The mapping from PID to stream number will
be stored by the agent and used for sending all subsequent transactions that
modify or delete this policy rule. The detailed specification of our approach,
including special cases, can be found in [8].

4 A Model for Head-of-line Blocking in SCTP

In the following, we model the SIMCO response time when SCTP is used as
transport protocol. We assume a scenario where the packet filter is located be-
tween two large domains, i. e., the busy hour call arrival rate is rather large.

4.1 Workload Model

As shown in Fig. 4, two pinholes are required to establish a call. The number of
SIMCO transactions required to open, maintain, and close a pinhole depends on
the call duration. According to Fig. 5, the pinhole is opened by a PER request,
and a PLC with a lifetime extension of 0 is sent when the call is terminated.
Due to additional PLCs during the call, the total number of SIMCO transactions
per pinhole is n(T ) = 2 + bT

L c, where T is the call duration and L the lifetime
extension period. The overall rate of SIMCO transactions depends on the call
duration distribution f(T ) and the rate of pinhole opening requests λ:

λSIMCO = λ ·
∫ ∞

0

n(T ) · f(T ) dT . (1)



If we assume that the call duration is exponentially distributed with mean h
and PDF f(T ) = 1

h exp(−T
h ), the mean inter-arrival time (IAT) d of SIMCO

messages in one direction can be approximated as d = 1
λSIMCO

≈ 1
λ

(
3
2 + h

L

)−1
.

4.2 Resequencing Delay over Multiple SCTP Streams

In this section, we model the effect of head-of-line blocking when several SCTP
streams are used in parallel for data transmission, i. e., the SIMCO traffic is
equally distributed over N ≥ 1 streams. We assume that the path between the
two endpoints has a constant unidirectional delay of ∆ and thus a minimum
round-trip time RTT = 2∆. The path is supposed to suffer from symmetric
random packet losses with loss probability p, which may be caused for instance
by congestion or transmission errors. Of course, for a well-dimensioned signaling
network p is likely to be small. Still, it is important to quantify the performance
impact of lossy links in order to derive system dimensioning guidelines.

Due to the packet loss in both directions, an acknowledgement for a DATA
chunk arrives at the sender with probability pS = (1−p)2. An endpoint can detect
packet loss if transmission sequence numbers (TSNs) are missing in the selective
acknowledgements (SACKs). A SACK, which is sent upon the reception of a
DATA chunk on one stream, contains missing TSN reports for all streams. Sim-
ilar to the “fast retransmit” mechanism in TCP, an SCTP endpoint retransmits
data when three subsequent SACKs include a missing report [9]. The reliable
data delivery is also ensured by a timeout mechanism. However, this mechanism
is usually only required if multiple packets get lost in sequence.

The SCTP error recovery by a fast retransmit is illustrated in Fig. 7. For this
figure, we assume that the SCTP association has N = 3 streams and a round
robin scheduling strategy is applied, i. e., the DATA chunks with transmission
sequence numbers 0, 3, 6, . . . are sent via stream #0, while DATA chunks with
TSNs 1, 4, 7, . . . and 2, 5, 8, . . . are sent via streams #1 and #2, respectively.
For simplicity, DATA chunks are supposed to be sent with constant IAT d.
Furthermore, we assume that the sending window does not restrict the amount
of DATA chunks sent, which is reasonable if the packet loss probability is small.

In this example, the DATA chunk with TSN 0 is lost. t0 denotes the point
in time when this packet is sent, t1 is when it should arrive at the receiver. At

stream #0’s
resequencing
queue length

0 timet t t

2
3

1

Q

310

www1 ...
w0

receiver
sender

0 1 2 3 6 TSN15

t2

9 0RTX 12

Fig. 7. Illustration of resequencing delays for 3 SCTP streams



t2 = t0 +RTT +3 d the sender has received 3 SACK chunks with missing reports
and performs the retransmission. Note that SCTP’s SACK messages contain
information about missing DATA chunks for all streams. When the retransmitted
packet arrives at the receiver at t3 = t2 + RTT/2, all DATA chunks in stream
#0’s resequencing queue can be delivered to the upper layer protocol entity.

The waiting times wn of DATA chunks in the resequencing queue depend on
the time D = w0 to detect and recover from the packet loss. As shown by Fig. 7,
the minimum value for D is RTT +3 d. However, D may be larger if SACKs get
lost, too. Each DATA chunk triggers a SACK chunk, but both may get lost. The
probability that three SACKs arrive at the sender, after i DATA chunks have
been sent, is P (i) = p3

S (1− pS)i−3
(
i−1
i−3

)
. From this follows

D ≈ RTT + d
∞∑

i=3

P (i) i = RTT +
3 d

(1− p)2
. (2)

This expression is an approximation only since the retransmission may get lost,
too. In this case, a retransmission timeout is required which may further enlarge
the recovery period. Several subsequent lost DATA chunks may also trigger over-
lapping fast recovery periods, which are difficult to describe by a simple model.
We neglect both effects in this model since they hardly occur if the packet loss
probability p is small.

The number of DATA chunks that have to be queued until the retransmission
arrives is Q = b D

d N c. The resequencing delay of the first DATA chunk after the
lost one is given by w1 = D − N d. The subsequent waiting times are w2 =
D − 2 N d, . . . , wQ = D − QN d. The mean waiting time is the sum of all wi

divided by the mean number of DATA chunks between two losses, which is 1/p.
The mean increase of the unidirectional end-to-end delivery delay is thus

W = p

Q∑
i=0

wi = p
(
(Q + 1) ·D − Q (Q+1)

2 N d
)

. (3)

For bidirectional transactions as in the case of SIMCO, head-of-line blocking
may occur in both directions and the mean response time thus follows as

R = RTT + 2 W + δ , (4)

where δ represents the processing time in the end systems. As already mentioned,
R must be small to minimize the answer signal delay perceived by users.

The remaining question is the optimal number of SCTP streams. Using a
large number of streams may not be efficient since this may waste resources
(memory) in the endpoints. Under the assumption that for small values of p at
most one stream is blocked, head-of-line blocking can be avoided completely if no
DATA chunks get queued before the retransmission is triggered, i. e., Q = 0. This
is fullfilled for N ≥ M with M =

⌈
D
d

⌉
. According to (2), M is quite insensitive

to p. From this follows the optimal number of streams as

M ≈
⌈
RTT · λ ·

(
3
2 + h

L

)
+ 3

⌉
. (5)



5 Performance Evaluation

5.1 Measurement Setup

In order to evaluate our “SIMCO over SCTP” specification [8], a prototype
compliant to [4, 8] has been implemented [10]. As shown in Fig. 8, the middle-
box software can control a packet filter (Linux Netfilter). For functional tests,
the SIMCO agent has been integrated into the VOVIDA SIP back-to-back user
agent (B2BUA) [11, 3]. A load generator emulating user behavior has been im-
plemented for measuring the SIMCO transaction response time (see Fig. 9).

The SIMCO software was implemented in C++ for Linux (kernel 2.6.11)
and Solaris 10. The Linux version can use either the “lksctp”-kernel module or
standard Linux TCP (using SACKs). For both protocols the “nodelay” socket
options have been enabled. For Solaris, so far only TCP performance has been
investigated. Measurements were made using two 2.4 GHz Pentium 4 or 500 MHz
UltraSPARC IIe computers connected by 100 Mbps Ethernet to a network emu-
lator, which adds a delay of ∆ = 10ms in each direction and randomly drops IP
packets with given probability p. The interaction of the middlebox software with
the packet filter was disabled to isolate the measured delay from this overhead.

In the following we present the measurement results for one typical scenario
with a large-scale softswitch. The load generator requests pinhole openings with
exponential IAT 1

λ = 30 ms and exponential lifetime h = 180 s. With two pin-
holes per call and a typical busy hour load of ρ = 0.05 Erlang, this corresponds to
a mean number of m = 1

2 h λ = 3, 000 simultaneous calls and S = h λ
2 ρ = 60, 000

subscribers. The rule softstates are refreshed every L = 120 s. From this fol-
lows d ≈ 10 ms as mean IAT of SIMCO messages. Measurements with other
parametrizations revealed similar results, which are documented in [12].

5.2 Measurement Results

Fig. 10 shows the mean SIMCO response time as a function of the packet loss
probability p. All values have been obtained by averaging over the response time
of PER requests during a measurement period of 1000 s after the load generator

ACK

SIP B2BUA

SIP protocol entity

TCP SCTPUDP

transceiver
SCTPTCP

transceiver

IP

SIMCO client

WAN

TCP SCTP

transceiver
SCTPTCP

transceiver

packet
filterIP

Middlebox

SIMCO server
rule
del
add/

Fig. 8. SIMCO/SCTP prototype with
B2BUA for proof of concept in SIP testbed

Emulator

Load Generator

Packet loss
Delay,

response
time

TCP SCTPUDP

transceiver
SCTPTCP

transceiver

IP

SIMCO client

WAN

TCP SCTP

transceiver
SCTPTCP

transceiver

packet
filterIP

Middlebox

SIMCO server
rule
del
add/

Fig. 9. SIMCO/SCTP testbed with load
generator for performance measurements



0.1 1 10
One-way packet loss probability p (in %)

20

30

40

50

60

70

80

90

100

M
ea

n 
SI

M
CO

 re
sp

on
se

 ti
m

e 
R 

(in
 m

s) Measurement
Analytical model TCP

SCTP

1

SolarisLinux

#streams N

2
4

8

Linux

Fig. 10. Comparison of SCTP/TCP

1 10 1024
Number of SCTP streams N

20

25

30

35

40

M
ea

n 
SI

M
CO

 re
sp

on
se

 ti
m

e 
R 

(in
 m

s) Measurement
Analytical model

0.0%
0.5%

1.0%

2.5%

5.0%

Optimal stream

Loss prob. p

number M

Fig. 11. Impact of SCTP streams no.

has reached the steady state. Fig. 10 reveals that using more than one SCTP
stream can significantly improve the SIMCO response time R even for moderate
loss probabilities such as p = 2 %. The difference gets larger for higher p, but
such situations will hardly occur in well-dimensioned signaling networks.

Fig. 11 presents the SCTP measurement results as a function of the number
of streams N . They match very well the response time predicted by the analytical
model in eq. (4), with a processing delay assumed to be δ = 0.5 ms. The model
slightly underestimates the response time for p > 1 %. This is probably due to
the impact of multiple fast retransmits and timeouts that cannot be neglected
for high loss probabilities. Fig. 11 also confirms that using a value N larger than
the optimum value (here: M = 6) does not significantly improve performance.

Futhermore, Fig. 10 presents measurement results for TCP, both for Linux
and Solaris operating systems. In theory, one would assume that TCP has a
similar performance like SCTP with one stream. However, according to our mea-
surements the mean SIMCO response time is significantly larger. Even worse,
TCP is not able to transport the offered load of about 100 transactions/s for
packet loss probabilities larger than 7 %, which is manifested by socket buffer
overflows. In particular the Linux TCP implementation, which is known to be
highly optimized, performes quite bad even for packet loss probabilities much
smaller than 1 %. Furthermore, there is a non-negligible probability for high
call-setup delays. For example, the 99 % quantile of the SIMCO response time
is ca. 100ms for p = 1 % if Linux TCP is used. Our analytical model for the
head-of-line blocking does not explain this TCP-specific effect.

We have verified the measurements with a pair of simple test programs that
use straightforward socket calls. These tests confirm the difference between TCP
and SCTP. To the best of our knowledge, this effect has not been reported so
far. An analysis of TCP traces shows that sometimes data arriving from the
application layer is not immediately sent to the network. These additional delays
could be caused by the TCP congestion control that reduces the sending window
when facing packet loss. A more detailed insight into this effect can probably be
obtained by means of simulation, but this is left for further study.



6 Conclusions

In this paper, we study the performance of the SIMCO protocol using SCTP
and TCP as transport protocols. Being a typical signaling protocol, SIMCO can
benefit from protocol mechanisms for high-reliability environments, which SCTP
provides. Compared to TCP, SCTP can also significantly reduce the SIMCO
response time by leveraging transmission over multiple streams, which reduces
head-of-line blocking. We propose an analytical model to quantify this effect, and
verify it with measurements. We show that a small number of SCTP streams
is sufficient to almost completely avoid head-of-line blocking. Furthermore, our
measurements, both for Linux and Solaris, reveal that using TCP for transaction-
based signaling causes significant delays even for small packet loss probabilities.

Acknowledgements

The authors would like to thank Christian Blankenhorn, Sebastian Beutel, and
Thomas Ruschival for their help with the testbed and the measurements, as well
as Martin Stiemerling and Michael Tüxen for valuable discussions and comments,
especially on the IETF documents. Michael Scharf is funded by the German
Research Foundation (DFG) through the Center of Excellence (SFB) 627.

References

1. G. Camarillo, R. Kantola, and H. Schulzrinne, “Evaluation of Transport Protocols
for the Session Initiation Protocol,” IEEE Network, vol. 17, no. 5, 2003.

2. H. Kamal, B. Penoff, and A. Wagner, “SCTP versus TCP for MPI,” in Proc.
Supercomputing 2005, Seattle, USA, Nov. 2005.

3. A. Müller and S. Kiesel, “Issues with the Interworking of Application Layer Pro-
tocols and the MIDCOM Architecture,” in Proc. Eunice Summer School, 2004.

4. M. Stiemerling, J. Quittek, and C. Cadar, “Simple Middlebox Configuration
(SIMCO) Protocol Version 3.0,” IETF draft - work in progress, May 2005.

5. ITU-T Study Group 2, “Network grade of service parameters and target values for
circuit-switched services in the evolving ISDN,” ITU-T, Rec. E.721, May 1999.

6. ITU-T Study Group XI, “INTRODUCTION TO CCITT SIGNALLING SYSTEM
No. 7,” ITU-T, Recommendation Q.700, Mar. 1993.

7. S. Kiesel, “On the Use of Cryptographic Cookies for Transport Layer Connection
Establishment,” in Proc. EUNICE Summer School, 2002.

8. S. Kiesel, “SIMCO over SCTP,” IETF draft - work in progress, Oct. 2005.
9. R. Stewart, “Stream Control Transmission Protocol (SCTP) Specification Errata

and Issues,” IETF draft - work in progress, Oct. 2005.
10. C. Blankenhorn, “Evaluation of SCTP as Transport Protocol for Transaction-based

Applications at the Example of a Protocol for Firewall Control,” Student project
(in German), University of Stuttgart, IKR, 2005.

11. A. Müller, “Extension of a SIP proxy by security functions,” Student project (in
German), University of Stuttgart, IKR, 2004.

12. S. Kiesel, M. Scharf, S. Beutel, and T. Ruschival, “Performance Measurement
Results of SIMCO over TCP and SCTP,” University of Stuttgart, IKR, Internal
Report 53, 2006.


