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Abstract—Parallel garbage collection seeks to exploit the
inherent parallelism of graph tracing by evenly distributing the
set of objects in the heap among all available processing re-
sources. Any straightforward implementation, however, suffers
from prohibitive overheads since each access to the worklist
of objects and to the objects themselves needs to be protected
by synchronization, especially so in the case of compacting
collectors. For this reason, known parallel collectors sacrifice
a great deal of work distribution granularity and scalability to
keep the synchronization costs acceptable.

In this paper, we present a case study of a different approach.
Our parallel compacting collector is based on Cheney’s copying
algorithm, employs a single worklist and distributes garbage
collection work on an object-by-object basis. This way, it
achieves well balanced work distribution and good scalability.
To solve the synchronization problem, we introduce a low-cost
multi-core garbage collection coprocessor and take advantage
of hardware-supported synchronization.

We built an FPGA-based prototype with a single-core
main processor supported by a multi-core garbage collection
coprocessor. Measurement results show that an 8-core garbage
collection coprocessor decreases the duration of garbage collec-
tion cycles by a factor of up to 7.4, while a 16-core configuration
still achieves a factor of up to 12.1.

Keywords-Parallel Garbage Collection, Hardware Support,
Object Based Processor Architectures, Synchronization

I. INTRODUCTION

Modern programming languages such as Java, C# or

Haskell rely on garbage collection (GC) because it offers

three significant advantages over manual memory man-

agement [1]: First, GC relieves the programmer from the

laborious and fault-prone task of memory management;

second, GC prevents common severe programming errors

(i.e. dangling references and memory leaks); third, GC is

mandatory for modular software design.

The two fundamental classes of GC algorithms are

reference-counting and tracing. As pure reference-counting

algorithms incur severe runtime overheads and cannot collect

cyclic data structures, most of today’s algorithms belong

to the latter class, i.e. they identify reachable objects by

traversing the object graph in the heap, starting from a set of

roots (i.e. processor registers and stacks). These algorithms

keep objects that still have to be traced in a pool, usually

organized as a list or a stack. An abstract description of

tracing garbage collection follows:

for every object o referenced by the roots do

mark o

add o to pool

end for

while pool is not empty do

remove an object o from pool

for every unmarked child c of o do

mark c

add c to pool

end for

end while

Some tracing GC algorithms compact the heap, either in

a separate compaction phase (mark-sweep-compact GC) or

inherently while they trace the object graph (copying GC).

In today’s multi-core systems, garbage collection faces a

new challenge: As multi-threaded applications take advan-

tage of many processors and allocate memory with a highly

increased bandwidth, a single-threaded garbage collector

will not be able to keep up and will threaten to become

a serious performance bottleneck [2, 3, 4]. Therefore, it is

imperative to parallelize garbage collection algorithms and

to implement them in a multi-threaded way.

Parallel tracing garbage collection, however, faces three

fundamental questions: (1) How is the collection work

decomposed into tasks? (2) How are these tasks assigned to

processes? (3) How are the processes orchestrated to prevent

inconsistencies due to concurrent accesses? [5]

A natural answer to the first question is to define the

scanning of a single object as a task, which effectively

makes pool a task pool. The obvious answer to the second

question is to let the algorithm dynamically assign these

tasks to processes by granting all processes access to pool.

This scheme promises that, at any given time, a sufficient

number of tasks is available for execution. As a result, thanks

to the shared nature of the object pool, this scheme achieves

perfect work balancing in theory.

It is challenging to answer the third question, i.e. to exploit

the concurrency and work-balancing potential of a fine-



grained approach in an efficient way. All processes must

synchronize their accesses to pool (add, remove) as well

as to the object graph. As typical object sizes lie in the

range of 10 to 50 bytes [6], the associated synchronization

operations become so frequent that they render this approach

prohibitively expensive on standard shared memory based

platforms. As a result, known parallel collectors reduce

the frequency of synchronization operations by sacrificing

work distribution granularity as well as scalability to keep

synchronization costs acceptable.

Rather than reducing the frequency of synchronization

operations, we pursue a different approach and dramatically

reduce the cost of synchronization. We achieve this by a

specialized multi-core garbage collection coprocessor that

takes advantage of hardware-supported synchronization to

efficiently coordinate garbage collection tasks.

This paper is organized as follows: In Section II, we

review the starting point of our study, Cheney’s copying

garbage collector. Section III discusses previous work on

parallel tracing garbage collection. In Section IV, we derive

a fine-grained parallel variant of Cheney’s collector. In

Section V, we introduce hardware-support that enables an ef-

ficient implementation of this algorithm. Finally, we present

measurements obtained from our FPGA-based prototype in

Section VI.

II. CHENEY’S COPYING COLLECTOR

Copying collectors like Cheney’s [7] divide the heap into

two areas called semispaces. During a garbage collection

cycle, all objects that are reachable from a set of roots

are copied from one semispace (fromspace) to the other

semispace (tospace). This way, copying collectors inherently

compact the heap. At the beginning of a garbage collection

cycle, Cheney’s collector flips the roles of fromspace and

tospace and initializes two pointers called scan and free

to point to the bottom of tospace. Next, it evacuates all

objects referenced by the root set from fromspace to tospace

(Figure 1, upper diagram, assuming that only A is refer-

enced by the root set). During evacuation, the collector just

copies the contents of an object, so the pointers inside the

tospace copy still refer to the original objects in fromspace.

After evacuation, the garbage collector advances free and

overwrites the first word in the fromspace object with a

forwarding pointer to the tospace copy. Although it is safe

to overwrite the contents of evacuated objects in fromspace,

Cheney’s algorithm requires at least one bit per object to

distinguish evacuated objects from objects that have not yet

been visited by the collector.

After the collector has evacuated all objects referenced by

the root set, it successively scans tospace locations pointed

to by scan. If the collector encounters a pointer, it checks

whether the corresponding object has already been evacuated

by the collector. If so, it overwrites that pointer with the

forwarding pointer found in the fromspace object. If not, it
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Figure 1. Cheney’s sequential copying algorithm

evacuates the corresponding object as described above and

updates the pointer to refer to the tospace copy (Figure 1,

lower diagram). In this way, the collector consecutively

replaces all pointers to fromspace objects with pointers to

their tospace copies. The algorithm terminates as soon as

scan catches up with free.

For illustration purposes, object states during garbage

collection are often described by Dijkstra’s tricolor abstrac-

tion [8]. In this abstraction, black indicates that the collector

has finished with an object for the current garbage collection

cycle, gray indicates that the collector has not finished with

the object or, for some reason, has to visit the object again,

and white indicates that the object has not been visited

by the collector. Applying Dijkstra’s tricolor abstraction to

Cheney’s algorithm, tospace objects below scan are black,

objects between scan and free are gray, and unevacuated

objects in fromspace are white.

III. PARALLEL TRACING GARBAGE COLLECTION

To parallelize Cheney’s algorithm, we have to synchronize

accesses to the work pool (i.e. the objects between scan

and free) and to the object graph (for marking objects as

evacuated and installing or following forwarding pointers).

The challenge is to do this efficiently. As all parallel tracing

collector face the same challenge, we’ll summarize some

representative algorithms.

We first review how existing collectors tackle the question

of how to distribute work units in a scalable way.



Halstead’s parallel variant of Baker’s copying collector

[9, 10] statically assigns work to processes by partitioning

the heap into process-local from- and tospaces. During a

cycle, each process collects only its local heap partition and

therefore does not interfere with the other processes’ work.

However, any algorithm that statically partitions the heap

faces work balancing problems because of the unpredictable

structure of the object graph.

Imai and Tick [11] extend an idea of Miller and Ep-

stein [12] and distribute work in coarser-grained units in

order to reduce contention. They dynamically partition the

heap into chunks of constant size. At any given time, a

process scans a single chunk and copies surviving objects

to another chunk. The algorithm organizes references to

chunks to be scanned as a shared stack, replacing object-

level granularity by chunk-level granularity. The two major

drawbacks of this approach are (1) fragmentation, canceling

one of the main advantages of copying garbage collectors,

and (2) the need for a dynamic auxiliary data structure apart

from the heap.

Another class of algorithms, introduced by Ossia et

al. [13], divides the collection work into work-packets, each

containing references to a set of gray objects. Each process

repeatedly removes a single packet from a shared packet

pool, locally scans the objects referenced by this packet,

and inserts packets with new gray references into the shared

pool, thereby replacing object-level granularity by packet-

level granularity.

Other algorithms replace the shared pool by multiple

process-local pools. One example is Endo et al.’s [15]

parallel variant of the Boehm-Demers-Weiser mark-sweep

collector [14]. To avoid work imbalances, a process exposes

some of the objects in its pool to the other processes. A

process may steal some of these exposed objects when

its own pool is empty. Flood [16] uses this work-stealing

idea to parallelize both a copying and a mark-compact

collector. One difference compared to Endo et al. is that

other processes may directly access objects in all pools, not

only a dedicated subset. Endo et al. report speedups of up

to 11.1 on a 16-core machine, but only for the mark phase.

Flood et al. achieve speedups for their compacting garbage

collector of 3.9 on a 8-core machine.

Cheng and Blelloch [17] employ work-sharing: Every

process owns a local pool that other processes cannot access.

In order to distribute work, processes periodically push some

objects to a shared pool. The drawback of this approach

is that there is high contention in accessing this pool. The

authors report a mean runtime overhead of the various

synchronization operations of 37 %.

Wu and Li [18] use task-pushing to distribute work

among processes: They introduce an object queue for every

pair of processes (A, B). Process A pushes objects into

the queue, while process B reads from the queue. These

single-writer/single-reader queues can be implemented with-

out heavy-weight synchronization primitives. They report

speedups of up to 7.5 for the mark phase on a 16-core

machine.

Parallel compaction basically uses the same idea to

distribute work among multiple processes, i.e. objects or

memory areas are combined to coarser-grained units, see

e.g. [20, 21, 22].

After this summary of known approaches for work dis-

tribution, we are now going to review how previous work

tackles the problems that arise when multiple processes

are to access the object graph in a both synchronized and

scalable way.

There are several publications that focus on reducing the

contention a compacting collector faces when it accesses

the target area. In Flood’s copying collector [16], processes

reserve regions in tospace (“local allocation buffers”). Then,

they can consecutively evacuate multiple objects without

further synchronization. The drawback of this approach is

tospace fragmentation, which motivated the work of Petrank

and Kolodner [19] that propose that each process pools

multiple evacuations before it allocates a heap region of

appropriate size.

In summary, all approaches to parallel garbage collection

decouple collector processes by decreasing the granular-

ity of a work unit and/or by partitioning the work list

among processes. Similarly, accesses to the object graph

are commonly performed at coarser granularities. Problems

are (1) increased algorithm complexity, (2) fragmentation,

(3) auxiliary dynamic data structures apart from the heap,

and (4) poor load balancing.

IV. PARALLELIZING CHENEY’S ALGORITHM

We will now assume that, in contrast to the previously

presented algorithms, we don’t have to avoid synchroniza-

tion. As a consequence, we can directly apply the “ideal”

approach sketched in the introduction. In this section, we

will derive a parallel variant of Cheney’s algorithm. Gray

objects represent tasks and are held in a centralized work

list. We further assume that every object possesses a header

that can hold mark state, object size, and forwarding pointers

or backlinks.

Under these assumptions, synchronization is necessary to

assure that:

1) every gray object is assigned to exactly one process.

We achieve this by providing atomic access to the scan

pointer.

2) every object is only evacuated once. We achieve this

by providing atomic access to object headers.

3) each object is assigned to an exclusive area in tospace.

We achieve this by providing atomic access to the free

pointer.

All processes scan tospace in parallel. The following

pseudo-code summarizes the corresponding main scanning

loop:



with locked scan do

Read header of object o at scan

Increment scan by object size

end with

for ptr ∈ object o do

with locked header of c := ∗ptr do

Read header of c

if c not marked then

with locked free do

Mark c

Install forwarding pointer in header of c

Install backlink to c at free

Increment free

end with

end if

end with

Replace ptr in tospace copy of o

end for

The algorithm terminates when scan reaches free and

when no process is currently scanning an object. To check

for this condition, each process sets a busy flag while it

executes the main scanning loop. Furthermore, each process

atomically checks the state of all busy flags while it com-

pares scan to free.

The algorithm exhibits the fixed lock ordering scheme

scan < header < free: While a process locks a header, it

never tries to lock scan; and while a process holds the free

lock, it neither locks a header nor scan. As Habermann [23]

shows, this ordering ensures that deadlocks cannot occur.

V. IMPLEMENTATION

A. Challenges

In shared memory based systems, all synchronization

mechanisms ultimately rely on variables in shared memory.

In contrast to regular data, lock variables are frequently

accessed by many different processors. This causes a high

amount of communication traffic to transfer data trough

the memory hierarchy and to ensure global write ordering.

Moreover, advanced processor features such as caches, write

buffers, out-of-order and speculative execution make it even

more costly to maintain coherent lock variables [24].

Lock accesses can negatively impact the performance

of accesses to unrelated data. In particular, as data is

transferred through the memory hierarchy at cache line

granularity, cache flushes required for lock coherency will

often remove unrelated data from the cache (false sharing).

Another problem is that accesses to locks and data must

frequently be ordered. This is e.g. required to assure that

accesses to data structures protected by a lock variable are

only performed within the corresponding critical section.

The programmer can enforce such orderings only on a coarse

level by expensive memory barriers. For example, such a

memory barrier may force all stores preceding the barrier to

complete before succeeding stores are permitted.

By employing a custom architecture, we can use a more

efficient approach: As every process in the algorithm pre-

sented in Section IV, at any given time, holds a bounded

number of locks only (scan, free and a single header), these

locks can be held in registers. This allows us to efficiently

access these locks and to isolate lock accesses from data

accesses. Furthermore, we exploit the highly regular access

patterns of GC algorithms to provide mechanisms for co-

herency and ordering between memory accesses of collector

processes only where required.

B. Overview

Our implementation builds upon the architecture intro-

duced in [25, 26, 27, 28, 29]. The main motivation for this

architecture is fine-grained real-time garbage collection, i.e.

to guarantee, for this first time, that GC pauses never exceed

a couple of hundred clock cycles. This goal is achieved by

a special GC coprocessor that is tightly coupled to a main

processor to efficiently synchronize GC with application

programs. To allow for this kind of efficient synchronization,

objects and pointers must be known at the hardware level.

For this purpose, the system’s main processor implements

an object-based memory model and strictly separates pointer

from non-pointer data.

In this paper, we apply the same approach of fine-grained

synchronization in hardware to parallel garbage collection.

Whereas we have to synchronize a single application with

a single collector for concurrent garbage collection, we

now synchronize multiple garbage collection processes. For

this purpose, we designed a multi-core GC coprocessor

(Figure 2) that consists of N microprogrammed cores, each

executing a single process, one synchronization block (SB)

that maintains the global synchronization state, and a mem-

ory access scheduler that enforces memory orderings. As

our primary focus lies on parallelizing GC, the coprocessor

currently stops the main processor for the whole collection

cycle. However, as a next step, we intend to allow the multi-

core coprocessor to run concurrently to the main processor.

Garbage collection coprocessor

Core
1

Core
N-1

Core
2

Core
N

Synchronization block (SB)
Main

processor

Memory ControllerSDRAM controller

Memory access scheduler

Figure 2. System overview

Each core of the coprocessor has a register file, two

arithmetic logic units (ALUs), four buffers for asynchronous

memory accesses, and a control unit that implements the

garbage collection algorithm as a single microprogram. Each



core performs up to two arithmetic-logic operations and can

initiate up to four memory operations per clock cycle.

C. Synchronization

Scan and free are implemented as registers in the SB that

can simultaneously be read by all cores. At most one core

may modify each of these two registers during a clock cycle.

For this purpose, the synchronization control block contains

a lock for scan and a lock for free. The cores can acquire and

release these locks via micro operations. If a core tries to

acquire a lock that is currently held by another core, the SB

will stall that core until the current owner releases the lock.

In the case of multiple cores simultaneously claiming a lock,

the SB applies a static prioritization scheme to determine

which core acquires the lock next.

Each core owns a header lock register in the synchro-

nization block. In contrast to the locks associated with scan

and free, each core can only change the lock state of its

own register. When a core tries to acquire a header lock, the

SB compares the content of the core’s header-lock register

to the content of all other header lock registers in parallel.

If it finds a match, the SB will stall that core. The case of

multiple cores trying to lock the same header simultaneously

is again resolved with a static prioritization scheme.

To implement the termination detection scheme described

in Section IV, the synchronization block contains a register

ScanState. Each core is assigned a busy bit in this register,

and all cores can read this register simultaneously.

To ensure that no core enters the scan loop before Core 1

has initialized scan and free and that the main processor

is not restarted before all buffers have been flushed, we

implement a mechanism for barrier synchronization: Any

micro-instruction can be marked as synchronizing. When

a core executes such a micro-instruction, the SB stalls the

core until all cores have reached a synchronizing micro

instruction.

All these synchronization operations incur no clock cycle

penalty in the uncontended case. In particular, a core ac-

quires a free lock within one clock cycle and this acquisition

is executed in parallel to other micro-operations. Similarly, a

lock can be released by one core and reacquired by another

core in the same cycle.

D. Object Layout and Memory Interface

Figure 3 shows the structure of objects in our system.

Each object is partitioned into a pointer area of length π

and a data area of length δ. π and δ as well as GC-related

information such as mark state and forwarding pointers are

referred to as attributes and stored in a two-word header.

Figure 4 shows the states that an object assumes during

a GC cycle: The first picture shows the initial state of an

object in tospace (White). When evacuating the object, a

collector process allocates an empty object frame in tospace

and installs both a forwarding pointer in fromspace and

Header Body, Pointer Area Body, Data Area

Figure 3. Structure of objects in memory

a backlink in tospace. Additionally, it sets a bit in the

fromspace object header to indicate that the object has been

evacuated (Gray 1). Later, when scan reaches the object

frame in tospace, a process sequentially copies the body

from the fromspace original to the tospace copy (Gray 2).

As in Cheney’s sequential algorithm, the process evacuates

any unmarked fromspace objects that are discovered during

this stage. Finally, when the process has completely copied

the object, it writes π and δ into the header of the tospace

copy (Black).

Fromspace Tospace

White
Evacuated-bit

Gray 1

Forwarding pointer

Backlink

Gray 2

Black

Figure 4. Object states

As we design the coprocessor specifically for garbage

collection, we can exploit the highly regular access patterns

of GC for the design of the memory interface and the

memory access scheduler. In contrast to body accesses

that are highly sequential, header accesses show no spatial

locality. Furthermore, while headers in from- and tospace are

accessed multiple times and potentially by different cores,

only one core accesses an object’s body areas, and accesses

each word exactly once.

We differentiate between those two access types and pro-

vide each core with separate load and store ports for headers

and bodies. The actual transfers between main memory and

the four buffers of each core are handled asynchronously:

Each core may initiate a transfer at any time and will only

stall when it tries to write to a store buffer while the previous

store is not complete or when it tries to read from a load



buffer while the corresponding load is not complete. In total,

the memory interface allows up to 4×N pending requests,

using a split-transaction scheme for a high degree of latency

tolerance.

The memory access scheduler enforces an ordering be-

tween memory operations only where required. In particular,

as there is no overlap between headers and bodies, the

memory access scheduler and the controller handle header

and body accesses completely independently of each other.

Each word in the body area in both fromspace and tospace

is either written or read exactly once during a collection

cycle. Furthermore, these accesses are independent of each

other. Therefore, no ordering has to be enforced for body

accesses. The memory access scheduler must only ensure

that loads are not performed before all stores of the previous

collection cycle have been committed. For this purpose, it

simply flushes all buffers at the end of a GC cycle.

The situation is different for object headers: Headers in

fromspace are written exactly once (when the object is

grayed) and read at least once (immediately before the object

is grayed and whenever a parent of the object is scanned),

potentially by a different core. Headers in tospace are first

written during evacuation, then read once (potentially by a

different core) during scanning and finally written a second

time to blacken the object. The memory access scheduler

orders header loads and stores by ensuring that a header load

is delayed whenever there is a store pending for the same

location. This is achieved by a simple comparator array. No

logic is necessary to enforce write ordering, as the locking

protocol ensures that there is only one writer for each header.

Finally, we introduce an optimization to accelerate ac-

cesses to tospace headers. In our algorithm, scan can only

be advanced after the size of the object at scan is known,

i.e. after its tospace header has been read. Therefore, these

accesses can become a bottleneck. However, as gray tospace

headers are read in exactly the same order as they are

written, we buffer them in an on-chip header FIFO. As long

as the number of gray objects does not exceed the capacity

of this queue, no memory accesses are required for header

accesses.

E. Coordination with the Main Processor

Core 1 stops the main processor when the current semi-

space is full and restarts the main processor when the

collection cycle has finished. Core 1 also accesses the

main processor’s registers in order to access the root set.

Furthermore, Core 1 flushes the main processor’s caches at

the beginning of a collection cycle and restarts the main

processor when all GC store buffers are empty.

VI. EXPERIMENTAL RESULTS

A. Measurement Platform

To demonstrate the feasibility and efficiency of our ap-

proach, we developed an FPGA-based prototype based on

the system presented in [26]. The protoype board contains

an Altera Stratix II FPGA (EP2S130 [30]), a standard DDR-

SDRAM module and various peripheral devices, including

an Ethernet interface for file access via NFS. The entire

prototype is synchronously operated at 25 MHz.

The main processor is realized as a statically scheduled

3-way multiple-issue explicitly parallel 32-bit RISC, with

8K instruction cache, 8K data cache, and 2K header cache.

The garbage collection coprocessor consists of up to 16

cores, each including a microcode memory of 180 words

with 96 bit each. The coprocessor’s header FIFO has a

capacity of up to 32k entries. The 16-core configuration of

the coprocessor requires approximately twice the chip area

of the main processor.

For clock-cycle accurate measurements, we integrated a

monitoring framework into the main FPGA that allows to

trace up to 32 internal signals in each clock cycle, or

to access a range of hardware performance counters. By

means of a dedicated, on-board Gigabit Ethernet interface,

the measurement data is transmitted at a rate of up to 800

MBit/s to a measurement PC, written to multiple hard disks

in parallel, and analyzed offline.

On the software side, we have developed a static Java

compiler that translates standard Java bytecode to the main

processor’s native machine code. Moreover, we realized

a subset of the Java class libraries supporting text-based,

single-threaded applications in order to facilitate the execu-

tion of representative programs. As our implementation cur-

rently does neither support multiple threads nor reflection,

we had to limit the benchmarks to the programs mentioned

in the next section.

B. Measurement Results

In our experiments, the heap size had little to no influence

on the measurement results regarding synchronization over-

head and scalability. Therefore, we dimensioned the heap

according to a rule of thumb and chose twice the minimal

heap size.

In a first experiment, we determined the speedup in

garbage collection time for various numbers of GC cores

(Figure 5). As the base for these comparisons, we used a

configuration where only one core is enabled. Because syn-

chronization operations incur no clock cycle penalty in the

uncontended case, this single-core configuration performs

like the original sequential implementation of Cheney’s

algorithm.

Most applications scale reasonable well. However, two

benchmarks (compress and search) don’t show any signif-

icant speedup. For these simple benchmarks, object-level

parallelization does not offer enough parallelism, as the

corresponding object graphs show highly linear structures

(compare [31]). To quantify a benchmark’s degree of object-

level parallelism (or the lack thereof), we measured the

number of clock cycles during which scan equals free. In
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Figure 5. Scaling behavior

Table I
FRACTION OF CLOCK CYCLES DURING WHICH WORK LIST IS EMPTY

Application 1 core 2 cores 4 cores 8 cores 16 cores

compress 0.01 % 0.15 % 98.58 % 99.43 % 99.72 %

cup 0.00 % 0.01 % 0.02 % 0.04 % 0.10 %

db 0.00 % 0.01 % 0.02 % 0.03 % 0.06 %

javac 0.00 % 0.01 % 0.01 % 0.03 % 0.08 %

javacc 0.15 % 0.57 % 1.35 % 3.06 % 5.34 %

jflex 0.02 % 0.05 % 0.13 % 5.48 % 35.35 %

jlisp 0.10 % 0.27 % 0.61 % 1.34 % 2.59 %

search 0.06 % 73.74 % 98.75 % 99.53 % 99.76 %

these clock cycles, there are no gray objects available for

processing. Tab. I lists the fraction of these clock cycles

relative to the total number of clock cycles. The table shows

that jflex also suffers from limited object-level parallelism,

yet to a lesser extent.

Next, we determined the mean amount of time each core

is stalled because of memory accesses and synchronization.

In Tab. II, the column “Total” lists the mean number of clock

cycles per collection cycle, while the remaining columns list

both the absolute and relative number of stall cycles.

Generally, few stalls are caused by synchronization op-

erations. One exception is javac, where a high amount of

conflicting header accesses occur, which indicates that a few

objects are referenced by many objects. We hope to improve

our implementation by reading the mark bit without prior

acquisition of the header lock and by attempting a locking

read only if the mark bit is cleared. The second exception

is cup, where the header FIFO overflows and the resulting

memory accesses prolong the critical section protected by

the scan lock.

Finally, we present some preliminary results concerning

the influence of the processor-memory interface on the scal-

ability of the coprocessor. Our prototype processors operate

at a clock rate of 25 MHz, whereas the DDR-SDRAM needs

to be operated at a clock rate of at least 100 MHz. Therefore,

the relation of processor speed to memory latencies and

memory throughput are not very typical for non-prototype

systems. In our system, the memory access latency is in the

range of a few clock cycles, compared to up to hundreds

of clock cycles in non-prototype systems. Therefore we

performed another experiment where we added an artificial

latency of 20 clock cycles to each memory access. Figure 6

shows that this increased latency significantly improves

scalability for all benchmarks that offer a sufficient degree of

object-level parallelism. The reason for this counter-intuitive

behavior is that the higher the memory latency, the higher

the fraction of time each core is stalled. Consequently,

more cores are required to exhaust the available memory

bandwidth.

VII. CONCLUSIONS AND FURTHER WORK

We demonstrated the efficient implementation of a fine-

grained parallel compacting garbage collector by taking

advantage of hardware-supported synchronization. In partic-

ular, we showed that this kind of synchronization does not

impair the scalability of the collector.

Our experiments show that two remaining issues limit

scalability: (1) Limited object-level parallelism and (2) lim-

ited memory bandwidth.

Therefore, we are currently investigating improvements

that allow us (1) to distribute work at a finer granularity

than object-level granularity, e.g. at the granularity of cache

lines, and (2) to make better use of the available memory

bandwidth, e.g. by header caches in conjunction with an

optimized header FIFO.
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Figure 6. Scaling behavior (more realistic memory latency, see text)

Table II
CLOCK CYCLE DISTRIBUTION (FOR 16 CORES)

Application Total Scan-lock stall Free-lock stall Header-lock stall Body load stall Body store stall Header load stall Header store stall

compress 4735060 113 (0.00 %) 4 (0.00 %) 38 (0.00 %) 75023 (1.58 %) 14626 (0.31 %) 2821 (0.06 %) 0 (0.00 %)

cup 3251965 341040 (10.49 %) 2940 (0.09 %) 7917 (0.24 %) 493847 (15.19 %) 4074 (0.13 %) 1254764 (38.58 %) 337 (0.01 %)

db 1089535 20633 (1.89 %) 893 (0.08 %) 1195 (0.11 %) 232208 (21.31 %) 6174 (0.57 %) 360913 (33.13 %) 0 (0.00 %)

javac 2141803 19067 (0.89 %) 1019 (0.05 %) 629596 (29.40 %) 235314 (10.99 %) 4442 (0.21 %) 560618 (26.18 %) 0 (0.00 %)

javacc 542825 18289 (3.37 %) 340 (0.06 %) 837 (0.15 %) 101272 (18.66 %) 2900 (0.53 %) 153939 (28.36 %) 0 (0.00 %)

jflex 411784 1517 (0.37 %) 96 (0.02 %) 208 (0.05 %) 55538 (13.49 %) 3809 (0.93 %) 44618 (10.84 %) 0 (0.00 %)

jlisp 37247 724 (1.94 %) 30 (0.08 %) 161 (0.43 %) 5468 (14.68 %) 243 (0.65 %) 10527 (28.26 %) 0 (0.00 %)

searchA 5916511 113 (0.00 %) 4 (0.00 %) 41 (0.00 %) 64849 (1.10 %) 15542 (0.26 %) 2953 (0.05 %) 0 (0.00 %)

In a next step, we plan to combine parallel garbage

collection (presented in this paper) and real-time garbage

collection (presented in our previous work) in order to real-

ize a fine-grained parallel and real-time garbage collector.
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