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Abstract

In this paper, the performance model for a lossless OBS edge node is built with respect to
the queueing performance of the transmission buffer. In contrast to the shaping effect of the
burst assembly in the bufferless edge node, in a lossless edge node the “burstifying” effect of
the assembly is more dominant and leads to a worse queueing performance in the transmission
buffer. We analyze the traffic characteristic by means of the variance process and identify that
there exists a negative correlation structure in the assembled burst traffic in the small time
scale, which resembles that of a CBR flow. Through the analysis of the relevant time scale,
it is found that this small time scale traffic behavior dominates the queueing performance
in most cases and the performance of burst transmission buffer can be well estimated by a
corresponding ND/D/1 model. In the case of the self-similar input traffic with large peakness
and at a high system load, the tail behavior of large queue length becomes much worse and can
be estimated by a Fractional Brownian Motion (FBM) model considering the large time scale
traffic behavior. Our performance model provides a simple but accurate analytical method for
the performance evaluation and system design.

1 Introduction

In the development of the next-generation optical networks, Optical Burst Switching (OBS) [1,
2] was proposed as a promising IP-over-WDM solution that has a prospective implementation
feasibility in the near future. In OBS networks, optical burst units of large size are applied to
transport the user data so as to alleviate the per-hop switching overhead and allow for a feasible
implementation of the electrical Switching Control Unit (SCU) in the core node. Consequently, in
the OBS ingress edge nodes, the burst assembly procedure is necessary to encapsulate the client
IP traffic into the optical bursts. The introduction of the burst assembly brings new network
performance phenomenon which has aroused lots of research interests.

1.1 Related Work and Motivation

The impact of the burst assembly on the traffic characteristic was studied in [3–5] with respect
to the marginal distribution of the burst size and inter-departure time of the assembled bursts.



As the data traffic has a high variability and shows the self-similarity or Long Range Dependence
(LRD) [6], the influence of the assembly procedure on the traffic LRD was inspected in [7–10].
Generally, it was shown that the degree of LRD cannot be suppressed by the assembly procedure.
However, the burst assembly do have a “shaping effect” on the passing traffic in the sense that
it reduces the variability in the inter-departure time of the assembled bursts. This can lead to a
better burst loss performance, which was verified by the performance analysis in [11,12] based on
the bufferless model. Especially, it was shown in [11] that the LRD, as a large time scale traffic
behavior, has little influence on the loss performance and the burst loss probability is bounded by
the Erlang-B formula.

As the edge node is mainly an electrical device, electrical memory components can be deployed
to reduce the local burst loss to a very small magnitude. In this case, the queueing delay turns
out to be an important performance issue. In [13], the performance of a lossless edge node was
studied with simulation, providing an empirical insight into the fundamental system behavior. To
the best of our knowledge, analytical performance model for lossless OBS edge node is still missing
for general performance estimation and system design. This motivates the contribution of this
paper.

1.2 Model, Method and Structure

In this paper, the queueing performance of a lossless edge node will be closely observed. In the
system model (Fig. 1), incoming IP packets are classified according to their targeted egress node
and QoS class and collected in the assembly queues of corresponding Forwarding Equivalent Class
(FEC). Assembled burst traffic is multiplexed into an unbounded transmission buffer where they
are scheduled onto the wavelength channel with the FIFO discipline. Here, the offset time for the
burst transmission is not considered. Note that if constant offset time is applied, it just introduces
an additional constant delay in the burst transmission and therefore can be neglected in the model
for statistical queueing analysis.

In principle, multiple channels can share the transmission buffer here to achieve an optimal
performance. However, this requires the bandwidth of the memory device to be up to the sum of
the channel rate and makes the hardware design utmost challenging. More feasible system design
can apply separate transmission buffers with each of them dedicated to one wavelength channel.
In this way, the required bandwidth of the memory device is equal to the single channel rate. In
this work, we will focus on the system in which the transmission buffer is equipped with a single
channel.

As the performance measure, the queue length tail probability (or CCDF function) of P{Q > x}
is observed for the transmission buffer. Let W denote the queueing delay. Delay performance
P{W > w} can be approximately derived through the relation P{Q > x} ≈ P{W > x/C}, where
C is the channel rate.

Due to the traffic multiplexing at the input of the transmission buffer, the traffic characteristic
obtained for single assembled burst flow with respect to the inter-burst arrival time [3–5] cannot
be directly applied for the performance evaluation. In this paper, we will derive the performance
model based on the analysis of the variance process of the aggregated assembled burst process. The
variance process VAR[At] is defined as the variance of the random variable At where At denotes
the amount of traffic arrival in an arbitrary time interval of t. The variance process can not only
characterize the variability of the traffic arrival [14], but also reflect the correlation structure in
the multiple time scales. This makes VAR[At] very “informative” for performance evaluation.
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Aggregated traffic generally shows different features at different time scales. In the queueing
analysis, it is important to identify which time scale is most relevant for the concerned queueing
phenomenon, so that tractable queueing analysis can be carried out by focusing on the traffic
behavior in that relevant time scale [15]. For single server queue with Gaussian input process At,
the queue length tail probability P{Q > x} has the relevant time scale τx = t with t maximizing
the following measure [15,16]:

VAR[At]

(x+ t(C −m))2
(1)

Here C is the constant service rate of the single server and m denotes the mean traffic rate.
This relation states that the relevant time scale is the period over which the event {Q > x} is most
likely to occur.

In this paper, it is found that under quite general system scenarios the relevant time scale
for the tail probability in the transmission buffer is located on the small time scale, on which
the variance process of an individual assembled burst flow resembles that of a Constant Bit Rate
(CBR) flow. As a result, the ND/D/1 performance model can be applied to estimate the queueing
performance of the transmission buffer. Only in the case of LRD traffic with high peakness and
at a high system load, a heavy-tailed queueing performance appears, which can be analyzed based
on the LRD property. Above analytical results are verified by the simulation.

This paper is structured as follows. In Section 2 the system model and traffic models will be
introduced. In Section 3, the “burstifying” effect of the assembly on the queueing performance will
be demonstrated and the worst case assembly scenario is illuminated. In Section 4, we characterize
the variance process of the assembled burst traffic under the worst case assembly. In Section 5,
the relevant time scale is analyzed based on the variance process of the aggregated traffic and the
performance model for the transmission buffer is specified. Simulation results are presented to
verify the analytical estimation. In Section 6, the conclusion and outlook are given.

2 System Parameters and Traffic Models

We look at the homogeneous system scenario in the edge node where the assembly control param-
eters and the traffic parameters are identical for all N FECs. N stands for the number of FECs.
FEC traffic flows are independent of each other. The transmission capacity of the wavelength
channel is fixed to 10Gbps.

In the observed system model, the burst assembly is controlled by two parameters: maximal
burst size Smax and timeout period Ttimer [8]. With the assembly control it is assured that the size
of the optical burst is not larger than Smax and the packet delay in the assembly buffer is bounded
by Ttimer. While Smax is very dependent on the implementation feasibility (e.g. dimensioning of
SCU, FDL in the core nodes), Ttimer is determined by the allocated delay budget in the edge node.

Modelling of IP traffic is still an ongoing research issue. While the IP traffic was proved to
show LRD [6] in the large time scale, it was also realized [17] that in the small-time scale the
backbone IP traffic shows the Poisson-alike behavior due to the traffic aggregation. In this work,
both Poisson traffic model and LRD traffic model are adopted.

In the Poisson traffic model, the packet arrival follows the Poisson process and the packet
length L is independently identically distributed (iid) with P{L = 40 bytes} = 0.49, P{L = 576
bytes} = 0.17, P{L = 1500 bytes} = 0.17 and P{L = x bytes} = 0.17/535 for 41≤x≤575 [18].
As a LRD model, M/Pareto process [19] is used. With this model, data sessions are generated
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Figure 1: System model of
an OBS edge node
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according to Poisson process. The size of a session follows the Pareto distribution with a mean
value of µ and the shaping parameter α. In each data session, the data is sent at a constant
rate of R. The rate R can be regarded as the link capacity of the access link on which each data
session is transmitted. In this sense, the M/Pareto process is an inherent model for the aggregated
traffic. The traffic generated by M/Pareto process shows uncorrelation in the small time scale and
LRD characteristic in the large time scale, fitting the measured multi-timescale characteristic of
the backbone IP traffic very well. The degree of LRD is characterized by the Hurst parameter
H determined by H = (3 − α)/2. In the presentation of the numerical results in the following
sections, the setting of α = 1.4, µ = 10KBytes will be used uniformly for the M/Pareto model.

3 Assembly as a “Burstifier”

Significant influence of the burst assembly procedure on the traffic characteristics lies in two aspects.
On one side, the variability of the assembled burst inter-departure time is smaller than that of the
packet interarrival time. On the other hand, the burst size is generally much larger than the IP
packet size. In a bufferless (pure loss) model, the burst loss probability is relative insensitive to
the burst size, so the more evenly distributed burst arrival leads to an improved performance.

In a lossless edge node, however, both effects are relevant. In particular, the large burst size
means large instantaneous jump in the arrival process of the traffic amount (in byte) which is
detrimental for the queueing performance. In [14] it is heuristically shown that the transform
of a packet arrival process by aggregating packets into super-frames results in a more variable
traffic process. This indicates that burst assembly can lead to a worse performance in the burst
transmission buffer.

Above intuitive estimation is verified by our extensive simulation study for both Poison and
M/Pareto traffic model. Representative results are shown in Fig. 2 illustrating the CCDF of the
queueing delay in the transmission buffer at a system load of 0.9. N = 20, Smax= 64KBytes and
Ttimer is set to different values respectively. Especially for the M/Pareto model, the access link
rate here is R = 50Mbps.

It can be seen that with both traffic models the queueing delay continuously increases with the
increasing Ttimer and finally converges to be constant irrespective of the further change of Ttimer.
This is due to the fact that the increase of Ttimer leads to larger size of the assembled bursts.
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However, when the Ttimer is large enough, the parameter Smax dominates the assembly control
and the burst size reaches its maximum. Further change of Ttimer has no more influence.

Special interesting queueing behavior is observed for the M/Pareto traffic. It is seen that
queueing delay only gets worse in the range of small w with the increasing Ttimer. For large w,
Ttimer causes little difference. This is because the burst assembly has little impact on the large
time scale characteristic of the passing traffic, which will become clearer in the following sections.

It is seen that the worst queueing performance appears when the parameter Smax dominates
the assembly control. In addition, it is reasonable to suppose that most of the bursts should reach
the size of Smax when the system runs at the designed full load. Therefore, we will focus on this
worst case assembly scenario in the following sections and the influence of the parameter Ttimer
will be neglected.

4 Variance Process of Assembled Traffic

In this section, the variance process of the assembled burst traffic is analyzed and the traffic statistic
on different time scales is inspected.

Let Ut denote the amount (in byte) of IP traffic arrival at the input of an assembly buffer in
an arbitrary interval of t. The average traffic rate is ψ. Therefore, the mean value E[Ut] = ψt. We
assume that the IP traffic can be approximated as a fluid flow model and Ut is a Gaussian process
with a Probability Density Function (PDF) of pt(u). Vt stands for the number of burst departures
from the assembly buffer in the interval t. The burst inter-departure time is denoted by D.

In case Smax dominates the assembly procedure, a departure burst always has the maximal
size of Smax. Therefore, E[Vt] = E[Ut]/Smax. rUt

denote the residual of the division Ut/Smax, i.e.,
rUt

= Ut/Smax − bUt/Smaxc, it can be derived [14]:

Vt =

{

bUt/Smaxc + 1 with probability rUt
,

bUt/Smaxc with probability 1 − rUt
.

(2)

And the variance process VAR[Vt] is calculated as [14]:

E[Vt
2] − E[Vt]

2

=

∫ ∞

0

E[Vt
2|Ut = u]pt(u) du− E[Vt]

2

=

∫ ∞

0

(ru(b
u

Smax
c + 1)2 + (1 − ru)(b

u

Smax
c)2)

·pt(u) du− (
E[Ut]

Smax
)2 (3)

However, a closed form solution for Eq.(3) is hard to obtain due to the floor function in the
integral. In the following, we aim to derive the approximate solution to VAR[Vt] for small and
large t.

We note that Eq.(3) can be rewritten as:
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∫ ∞

0

((b
u

Smax
c + ru)

2 + (ru − r2u))pt(u) du− (
E[Ut]

Smax
)2

=

∫ ∞

0

((
u

Smax
)2 + (ru − r2u)) · pt(u) du− (

E[Ut]

Smax
)2

=

∫ ∞

0

(ru − r2u) · pt(u) du+
VAR[Ut]

S2
max

(4)

Eq.(4) clearly illuminates the relationship between VAR[Vt] and VAR[Ut].

4.1 Small Time Scale Approximation

In the small time scale t → 0, VAR[Ut] is small and the PDF pt(u) tends to an impulse located
at u = E[Ut] = ψt. At the same time, the term VAR[Ut]/S

2

max is small and can be ignored. This
leads to the small time scale approximation of VAR[Vt]:

VAR[Vt] ≈ (ru − r2u)|u=ψt (5)

Observing rψt = ψt/Smax−bψt/Smaxc and taking the fact that the mean burst inter-departure
time E[D] = Smax/ψ, it results in ηt = rψt = t/E[D] − bt/E[D]c. An alternative to Eq.(5) is:

VAR[Vt] ≈ ηt − η2

t (6)

It can be shown based on the results in Section III.A of [20] that Eq.(6) is actually the variance
process of a CBR flow with a constant inter-arrival time equal to E[D]. This indicates that in the
small time scale the variance structure of the assembled burst traffic resembles the pattern of a
CBR flow.

4.2 Large Time Scale Approximation

Since 0 ≤ ru < 1 is a periodic function of u with the period equal to Smax, the integration operation
in Eq.(4) can be represented by a sum of piecewise integration:

VAR[Vt] −
VAR[Ut]

S2
max

=

∞
∑

k=0

∫ Smax

0

(
ζ

Smax
− (

ζ

Smax
)2)pt(kSmax + ζ) dζ (7)

In the large time scale, both E[Ut] and VAR[Ut] are large and the span of PDF pt(u) is much
greater than Smax. Therefore, pt(kSmax + ζ) ≈ pt(kSmax) for 0 < ζ < Smax. Eq.(7) can be
approximated as:
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VAR[Vt] −
VAR[Ut]

S2
max

≈
∞
∑

k=0

pt(kSmax) ·

∫ Smax

0

(
ζ

Smax
− (

ζ

Smax
)2) dζ

=
∞
∑

k=0

pt(kSmax) ·
Smax

6
≈

1

6
(8)

This leads to the large time scale approximation:

VAR[Vt] ≈
1

6
+

VAR[Ut]

S2
max

(9)

4.3 Numerical Solution

To have a complete view of the variance structure and verify the small/large time scale approxima-
tion, the variance process is studied by solving Eq.(4) numerically and also by simulation. Since
the results conform to each other quite well, only the numerical results are shown in this section.

For the computation, the Gaussian PDF pt(u) is specified by matching its mean and variance to
those of the incoming IP traffic. While the mean value is straightforward to determine, the variance
of the IP traffic arrival process is dependent on the traffic model. In the case of the Poisson model,
the amount of traffic arrival follows the compound Poisson distribution, the variance of which can
be got according to the standard probability theory. In the case of M/Pareto model, its variance
process is obtained according to the analysis in [19,21].

In Fig.3, resulting VAR[Vt] (burst traffic) is plotted together with the related VAR[Ut]/S
2

max

(packet traffic). For comparison, the variance process of the corresponding CBR flow (Eq.(6)) is
also shown. Smax=64KBytes. For both traffic models, the mean IP traffic rate is 450 Mbps. In
the M/Pareto model, access link rate R = 50Mbps.

It can be seen that in both cases, the variance structure of burst traffic looks like the normalized
variance process of the packet traffic incremented by a positive factor. This factor fluctuates
periodically in the small time scale and converges to be constant with the increasing time scale.
This phenomenon can be exactly explained by the form of the Eq.(4). In the small time scale,
VAR[Vt] is tightly consistent with the variance process of the CBR traffic, which verifies our small
time scale approximation. Especially, the decreasing part of the variance structure in the burst
traffic and the CBR traffic is an indication of the existence of negative correlation, which is caused
by the floor function. In the large time scale, the variance process of the burst traffic and packet
traffic tends to be parallel. A closer inspection discovers that the difference between them is about
0.16. This is consistent with the large time scale approximation in Eq.(9).

Noticeable difference between the two models lies in the dramatic increase of VAR[Vt] with t
in the case of M/Pareto model due to the LRD property. As a result, VAR[Vt] converges faster to
the large time scale approximation. In very large time scales, the constant item of 1/6 in Eq.(9)
becomes negligible, meaning that the burst assembly has little influence on the large time scale
traffic characteristic.
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5 Performance of Transmission Buffer

In this section, the relevant time scale is analyzed based on the variance process of the aggregated
burst traffic. It is shown that depending on the location of the relevant time scale, well known
ND/D/1 model [20] as well as Fractional Brownian Motion (FBM) model [22] can be used to
estimate the performance of the transmission buffer under the worst-case assembly scenario.

5.1 Calculation of Relevant Time Scale

Let Mt represent the variance process of the aggregated burst arrival at the input of the transmis-
sion buffer. For the homogeneous scenario and independent FEC flows as stated in Section II, there
is VAR[Mt] = N · VAR[Vt]. By replacing the VAR[At] in Eq.(1) with VAR[Mt], the relevant time
scale τx with respect to the queue length tail probability P{Qb > x} is obtainable by numerical
optimization. Note that Qb is the number of the bursts in the transmission buffer.

In Fig.4 τx is shown for both IP traffic models at a system load of 0.9. N = 20. It can be seen
that in the case of Poisson model, the relevant time scale remains in the small time scale for all
values of x. With the M/Pareto model, in the range of small x, τx is small, similar to the case of
Poisson model. However, with the increasing x, τx jumps to the large time scale at a critical value
of x = xc, depending on the access link rate R. A large R leads to a small xc, making τx shift to
the large time scale even for pretty small x.

5.2 Estimation of the Queueing Performance

As shown in the Section IV, in the small time scale, the variance process of an individual burst
departure traffic is analogous to a CBR flow whose arrival period is equal to the mean burst
departure time E[D]. As a result, the aggregated burst traffic behaves like the multiplexing of
N CBR flows in the small time scale. This implies that the ND/D/1 model can be applied for
performance estimation as long as the respective τx is located in the small time scale.

Since τx remains low in the case of Poisson model, according to ND/D/1 model [20] P{Qb > x}
is estimated by:
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∑

x<k≤N

(

N

k

)

(
k − x

E[D]
)k(1 −

k − x

E[D]
)N−k(

E[D] −N + x

E[D] − k + x
) (10)

Let Wb denote the queueing delay normalized by one burst transmission time on the wavelength
channel. The delay performance can be analytically obtained by P{Wb > x} ≈ P{Qb > x}. In
Fig.5, the goodness of the estimation of Wb is shown by comparing with the simulation results.
Different system loads (0.3, 0.6, 0.9) and different Smax (16KBytes, 64KBytes) are inspected.
N = 20. It can be seen that the ND/D/1 analytical model really serves as a tight approximation
under every scenario.

When the M/Pareto model is concerned, Eq.(10) is still applicable in the range of small x,
because τx is also small. However, for large x τx increases very fast. So the large time scale traffic
behavior has more influence on the queueing performance. In the large time scale, the M/Pareto
process converges to FBM process [19]. Using the queueing analysis for FBM process [21,22], it is
obtained for large x:

P{Qb > x} ≈ exp (−
(C −m)2Hx2−2H

2H2H(1 −H)2−2H · a ·m
) (11)

Here C denotes the channel transmission rate and m is the total traffic rate at the transmission
buffer. H is the Hurst parameter and a is calculated as [21]:

a =
R2H−1 · ( 2−2H

3−2H
· µ)2−2H

(3 − 2H) · (2H − 1) ·H
(12)

R is the access link rate and µ is the mean session size defined in Section II. Note that the unit
of the parameter C, m, R, µ should be correspondingly adapted according to the unit of Qb.

Based on Eq.(10) and Eq.(11), P{Wb > x} for M/Pareto traffic can be derived for small and
large x respectively. The results are plotted in Fig.6 in comparison with the simulation. The
system load is 0.9. It is seen that for M/Pareto traffic with small access link rate R (10Mbps),
the performance is still well estimated by the ND/D/1 model over the wide range of x. This is
in consistency with its τx plotted in Fig.4. For large R (100Mbps), in the range of small x, the
CCDF curve follows the analytical result from the ND/D/1 model. For large x, the FBM model
estimates the performance very well.

It is worth pointing out, although the determination of the τx needs the numerical optimization,
the queueing performance can be directly estimated with the closed form solutions of Eq.(10) and
Eq.(11). In addition, due to the continuity of the general tail probability of the queueing delay,
the critical value xc for M/Pareto traffic can be actually estimated from the intersection point of
the curves estimated by the ND/D/1 model and FBM model as shown in Fig.6.

5.3 Discussion

Our performance analysis shows that the detrimental effect of the LRD traffic characteristic on
the queueing performance can be eliminated by keeping a large aggregation level of the traffic.
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That is, keeping the access link rate of individual traffic sources relative small in comparison to
the mean rate of the aggregated traffic, or equivalently (in the case of a fixed load) in comparison
to the channel capacity in the backbone link. This helps drive the edge node operating in a good
performance region, where it resembles a ND/D/1 model.

By modelling with a ND/D/1 system, it is realized that the maximal burst size Smax is a decisive
parameter for the queueing performance under specified system load and the number of FECs N .
For example, at the load of 0.9 with N = 20, it is shown in Fig.5 that P{Wb > 11} < 10−6. On
a 10Gbps channel, this leads to an absolute queueing delay P{W > 0.14ms} < 10−6 for a small
Smax=16KBytes. In comparison to the Ttimer which is generally in the range of several millisecond
depending on the delay budget specification, the queueing delay is one magnitude smaller and can
be neglected, even at such a high load (90%). This also justifies the application of FIFO buffer here
since more advanced scheduling can not bring much improvement anyway despite of the increased
complexity. However, if a large Smax = 128KBytes is defined, it means P{W > 1.13ms} < 10−6.
The queueing delay is then comparable to Ttimer and must be considered. In that case, it can be
necessary to adopt advanced scheduling procedures to differentiate and guarantee the quality of
service.

6 Conclusion and Outlook

In this paper, the influence of the burst assembly on the traffic characteristic and system per-
formance in a lossless edge node is inspected with Poisson and LRD IP traffic. It is found that
the burst assembly leads to a worse system performance due to the increased size of the data
transmission unit (burst). The worst case occurs when the size parameter Smax dominates the
assembly procedure and all bursts have the maximal size. The variance process of the burst traf-
fic is analyzed especially for the small and large time scale under the worst case assembly. It is
figured out that the assembly procedure brings a negative correlation structure in the small time
scale that resembles a CBR flow. In the large time scale, the burst assembly has only little impact
on the variance process of the traffic. Based on the analysis of the relevant time scale, we show
the queueing performance of the burst transmission buffer can be conveniently estimated through
approximating the system by ND/D/1 or FBM model. Both models are simple and accurate,
which can serve as parsimonious performance models for the delay estimation as well as buffer
dimensioning in the edge node.

In this work, no offset time in the burst transmission is considered in the system model. The
OBS scheme with constant offset time can still be covered by the proposed performance model
by treating the offset time as a constant extra delay. However, in case of variable offset time the
system behavior will be quite different. This issue will be the subject of future research.
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