
1 Introduction

Packet classification is one of the major tasks of modern
packet processing systems imposing challenging require-
ments, especially at the edge of high-speed transport net-
works.

Packet classification is the process of mapping packets to
certain categories and is needed for most network process-
ing systems. Examples for packet classification are the
assignment of packets to MPLS paths, flow identification,
classification for QoS and scheduling purposes, observa-
tion of firewall rules and detection of intrusions.

The above application areas of packet classification span a
wide range of the classification criteria regarding the quan-
tity and complexity. This ranges from classification
according to few bits in a packet up to complex and depen-
dent expressions of numerous criteria.

To satisfy the fact that protocol definitions may change
and new protocols are developed, a packet processing sys-
tem should be highly flexible and adaptable.

Packet classification needs to be performed at full line
speed to avoid loss, additional delay and additional packet
buffers. Modern packet processing systems with link
speeds up to 10 Gbps at the edge of transport networks
introduce hard constraints to classification speed and it
therefore still remains an open networking problem [1].
This is even enlarged by strict design principles resulting
from further constraints for edge node systems. For these
reasons smart and problem-specific but flexible solutions
are required.

In this paper we present an architecture for a packet classi-
fication module suitable for high speed transport network
interfaces. This architecture allows the flexible adaptation
of classification rules by deploying the concept of micro-
programming. The usage of microprogramming addition-
ally leads to deterministic processing times.
Microprogramming is a concept of enabling the desired
flexibility into hardwired logic circuits. It has been widely
used in CISC microprocessors and is now being rediscov-
ered for the use in network processing systems [2], [3].

The classification architecture is already successfully
implemented and applied to a high-performance measure-
ment platform for network traffic [4].

The paper is structured as follows: Section 2 describes the
process of packet classification and suitable platforms for
classification systems. Section 3 introduces our architec-
ture for a microprogrammed classification module. The
realization aspects and implementation results are shown
in Section 4. Finally, the paper closes with conclusions
and an outlook to future work.

2 Packet Classification Systems

Packet classification is widely used in many different
applications. Generally, packet classification inspects
packets with respect to certain criteria and maps them to
specific categories [5]. These categories can be interface
identifiers for switching or routing decisions, classes of
service for QoS support or packet filtering rules in a fire-
wall or intrusion-detection system.

A Flexible Microprogrammed Packet Classifier
for Edge Nodes of Transport Networks*

Simon Hauger, Sascha Junghans, Arthur Mutter, Detlef Sass
University of Stuttgart, Institute of Communication Networks and Computer Engineering (IKR)
Pfaffenwaldring 47, 70569 Stuttgart, Germany
e-mail: {hauger, junghans, mutter, sass}@ikr.uni-stuttgart.de

Abstract
Packet classification is one of the major tasks of packet processing systems at the edge of high-speed transport networks.
As existing protocols are evolving and new protocols are constantly being developed, today’s network systems have to be
highly flexible and adaptable to changing requirements. In this paper we present a scalable architecture for a packet clas-
sification system for high speed transport network interfaces. This architecture allows the introduction of new protocols
and the update of classification rules during operation by using the concept of microprogramming. In the paper we will
give a detailed description of the classifiers microprogrammed architecture. Further, the topics performance data con-
cerning the throughput of the classification unit, realization complexity and resource requirements on the chip are also
addressed.

* This work was partly funded within the EIBONE project KOMMT!flexRN by the German Bundesministerium für Bildung und
Forschung under contract No. 01BP566.



A classification module obtains a copy of the packet as
input and outputs an identifier for the matching category
the packet is assigned to.

Depending on the application, the requirements for classi-
fication modules vary in a broad range: Very high line
rates limit the number of classification rules, while sys-
tems with moderate line rates can support high numbers of
classification rules.

For the classification process a set of classification rules is
defined. A classification rule contains of one or several
classification criteria. A classification criteria describes a
certain condition that has to be fulfilled. Conditions can
have different characteristics. They can refer to exact val-
ues like a specific port number or ranges of values like
ranges of target or source IP addresses for the identifica-
tion of IP subnets or even more complex criteria. Some
criteria check for values of certain bits in a distinct proto-
col header like the syn bit of TCP which need the introduc-
tion of "care" and "don’t care" flags for each bit. This
behavior can be achieved with so-called ternary logic and
allows the efficient and compact definition of classification
criteria.

Depending on the application field, classification is often
called differently. In the case of examining the layers two
to four to make switching or routing decisions it is often
called lookup. In the case of examining higher layer proto-
cols the expression deep packet classification is used [6].

In both cases the rules can be valid for a long period of
time like the mapping of packets into MPLS paths at the
edge of a transport network or dynamically changing like
in QoS-aware routers which react on newly identified
flows. In the latter case not only the fast processing of
packets is important but also the update process for new
classification rules.

As many criteria can match for a single packet, several
rules can match as well. At the end, one rule must be
selected to determine the corresponding system action.
This needs a prioritization of the classification rules which
can be seen as a point location problem in a multi-dimen-
sional space [1].

The criteria rules can be represented by multi-dimensional
trees which must be traversed during the classification pro-
cess or they can be ordered in a grid of tries. Further hash
values can be used with lookup tables for ordering the
identification process of the rule with the highest priority.

As some protocol headers can have variable lengths the
definition of classification criteria can not be defined by
providing a fixed position in the data stream but must be
defined with relative positions like "Byte 3 and 4 of the
UDP header". As new protocols and services are intro-
duced from time to time, the different protocols and head-
ers should not be hard-wired or hard-coded in the classifier
but should be easily adaptable to new requirements.

For the implementation of packet processing systems sev-
eral basic methods and technologies can be used. General-
purpose processors provide the flexibility for achieving
highly adaptable systems but can not fulfil the high pro-
cessing requirements and the high I/O bandwidth required
at the edge of transport networks. Network processors
(NPs) are devices which are designed for high I/O
throughput and provide dedicated functions for packet
processing tasks. They can be programmed with special-
ized programming languages which allow the efficient
usage of all NP components [5]. As NPs usually have a
dedicated lookup engine as a monolithic block, the pro-
grammer can not influence the lookup process in detail.

Field programmable gate arrays (FPGAs) and application
specific integrated circuits (ASICs) allow more specialized
logic designs for the processing modules. While FPGAs
provide a very high flexibility because the logic design can
be updated in the system, ASICs are cheaper if the number
of produced devices is high enough. As the designer can
develop system modules on different abstraction layers
und make them very specific, these devices are well suited
to achieve the required performance.

Classification modules can determine the fulfillment of the
rules in different ways. If the packet data is sent to the
classifier as a data stream the classifier often scans the
whole packet and identifies all matching classification cri-
teria. Others read out the buffer memory at those addresses
which are important for their rules.

Classifier
Input
Stage

Next

Fig. 1 Typical environment for a classification
module

Refe
re

nc
e

Processing
Stage

Memory Management

Pac
ke

t D
ata

Pac
ke

t d
ata

Refe
re

nc
e

Cate
go

ry

Buffer Memory

Reference
Packet Data

Packet Data



The constraints concerning processing delays for the
scheduling modules are very strict at the edge of a trans-
port network with high data rates as all packets must be
classified at line speed. This is why classification sytems at
this location do not handle references to buffer addresses
which can lead to long memory access times. Instead,
architectures are used which scan copies of the packets on
the fly without time costly memory accesses.
Figure 1 shows a typical environment for a classification
module with on the fly processing in a logic design.
The packet data enters the system via an input stage. This
input stage forwards the data to the memory management
to store the data into the buffer memory. The memory
management returns a unique reference to the stored data.
Upon this the input stage forwards a copy of the packet
data as well as the corresponding reference to the classi-
fier. The copied packet is scanned by the classifier and
dropped after the classification process. The classifier for-
wards the reference and the identified category to the next
packet processing stage. Following stages, processing the
determined category, use the reference to access the packet
data in memory.
We introduce a classification module for the edge of trans-
port networks. It therefore processes the packets on the fly
as motivated above. The interpretation of the protocol lay-
ers is performed by a microprogrammed system. Its
knowledge of the protocols and the classification rules are
stored in fast accessible internal memory. This allows the
easy introduction of new protocols and updates of classifi-
cation rules.

3 Concept and Architecture

The classification module processes a copy of the incom-
ing packet as a stream of data words. In the following sec-
tion the basic structure and the functionality of the units of
the classification module are described. The most chal-
lenging unit, the Microprogrammed Layer Decoder, is
explained in more detail, in order to show the high flexibil-

ity and adaptability to arbitrary new protocols or protocol
extensions. Finally there is a short section regarding the
realization aspects of this classifier on an FPGA.

3.1 Basic structure

The classification unit is built up by several functional
units. These units form a pipeline structure as shown in
Figure 2, consisting of a Shifter, a Layer Decoder, a Crite-
ria Check unit, a Match Accumulator and finally a Deci-
sion unit. Each packet is continuously processed in 32 bit
wide data words.
The first unit of the pipeline is the Shifter. This unit aligns
the incoming data in a way that each protocol header starts
in a new data word, reducing the complexity in following
functional units. This unit is controlled by the adjacent
Layer Decoder.
The Layer Decoder unit owns the knowledge about all the
different protocol layers, incoming packets might consist
of. It is completely microprogrammable, so that the classi-
fication unit can easily be adapted to changes in protocol
definitions or even new protocols. This unit is described in
depth in the next section. The main task of this unit is
interpreting the relevant fields (e.g. header length field) of
each protocol in order to control the Shifter and to label
each data word with a distinct index. This index states the
current protocol and the relative position of this data word
within that protocol layer (e.g. word 2 within protocol
UDP).
The indexed data words are forwarded to the Criteria
Check Unit. Here each data word is compared to a data-
base consisting of all criteria that are needed for the classi-
fication rules. Because of the appended index of each word
only those criteria that are relevant for the current protocol
and the current position within that protocol can lead to a
match. The result of this comparison is output in the form
of a match vector, consisting of zeros at those positions
where no match was found and ones at those positions
where a match was found at the according positions in the
database.

Layer
DecoderShifter

Criteria
Check Decision

Unit

Match
Accu-

mulator

Fig. 2 Basic structure of the packet classifier

Unit

Data

DataInd
ex

ed

Ve
cto

r
Matc

h

Matc
h

Acc
um

ula
ted

Cate
go

ry

Ve
cto

rs



The match vectors of each data word of a packet are com-
bined in the Match Accumulator unit. This unit basically
combines the match vector of each data word with all pre-
vious match vectors of this packet by a bit by bit logical
OR. When all words of a packet have been processed, the
accumulated match vector shows a set of all criteria this
packet complies with.

The Decision Unit uses this accumulated match vector to
come to a decision and assigns the respective category to
the processed packet. This is done by comparing the ful-
filled criteria with all classification rules, and classifying
the packet according to the classification rule with the
highest priority that is adhered to.

3.2 Microprogrammed Layer Decoder

In order to achieve the required flexibility to current and
future protocols our classifier contains a micropro-
grammed Layer Decoder.

The Layer Decoder utilizes the fact that all protocols must
contain a field specifying the protocol contained in its pay-
load, unless this is statically defined. Further, all protocols
have either a fixed header length or contain a field in their
protocol header defining their header length.

The structure of the Layer Decoder is depicted in Figure 3.
The Microcode Memory is the central unit in the Layer
Decoder. It contains microcoded instructions for all sup-
ported protocols. The microcoded instructions contain
information about the position of the header length field or
a fixed length as well as the position of the field specifying
the next protocol. These instructions are interpreted by
two functional units aptly named Header Length unit and
Next Protocol unit. These units extract, process and buffer
the respective fields of the incoming packet data words.

The header length is used to determine when the next
microcoded instructions for the following protocol have to
be loaded as well as to compute the shift value for the pre-
ceding Shifter. The extracted header field containing the
information about the next protocol layer is forwarded to a
Jump Table, where the address of the corresponding
microcode in the Microcode Memory is determined. The
Counter- & Index Generator keeps track of the position of
the current data word within the current protocol. This
information is used in the Header Length and Next Proto-
col units in order to extract the correct byte fields of the
protocol header. Furthermore the Counter- & Index Gener-
ator uses this information to label each data word with an
index stating the protocol this data word is part of and the
word position within this protocol. This index is used in
following Criteria Check unit as described in the previous
section. The Layer Decoder Control consists of a finite
state machine controlling the cooperation of all units.

As the Layer Decoder as well as the Jump Table are com-
pletely user-programmable this classification module is
adaptable to arbitrary new or changed protocol definitions.
There are no constraints about the structure of the protocol
headers except for mandatory fields specifying the follow-
ing protocol and the current header length unless those are
not fixed values.

3.3 Realization Aspects

This module was realized in a field-programmable gate
array (FPGA). The design extensively utilizes small con-
tent-addressable memory (CAM) blocks within the FPGA.

Both the Criteria Check unit and the Decision unit mainly
consist of a CAM. Also the Jump Table within the Layer
Decoder uses a CAM.

Header Length

Next Protocol Jump Table

Microcode
Memory

Counter
& Index-

Generator

Layer Decoder Control

Fig. 3 Structure of the microprogrammed Layer Decoder

Indexed
Data

instruction

Data

nextprotocol
address



The first two units use ternary CAMs (TCAMs) that allow
the usage of a third value ‘X’ meaning "don’t care"
besides the logical ‘1’ and ‘0’. With this third state irrele-
vant bit fields within a data word can be masked out. This
is an efficient way to check for different criteria or to find a
final decision in those units.

The Jump Table uses an ordinary binary CAM, looking for
exact matches when looking for the address for the next
protocol instructions.

4 Application and Results

The classification module we introduced in this paper is
applied in a high-performance Internet measurement plat-
form, the I2MP [4]. The measurement platform is built up
on the UHP (Universal Hardware Platform) [7] of the
authors’ institute. This platform provides a rather old
FPGA from Altera (APEX20K 400CB652-C7) and sev-
eral communication interfaces, like electrical and optical
Gigabit Ethernet interfaces.

The measurement platform records packet header infor-
mation according to filters that are realized using this clas-
sification module. Despite the rather old FPGA technology
used for this application, it is still possible to perform all
packet processing tasks, including classification utilizing
the introduced module, at full Gigabit Ethernet line speed.

The classification module within the measurement plat-
form is operated with a clock frequency of 31.25 MHz.
Timing analyses of the Quartus place-and-route software
from Altera show however that even clock frequencies up
to 42 MHz can easily be supported by this FPGA.

With this clock frequency classification can be performed
with up to 1.3 Gbps with large packets and up to 2.2 mil-
lion minimum-sized Ethernet packets can be processed in
one second.

The classification module has a latency of only 16 clock
cycles, resulting in a delay of 0.38 μs with a clock fre-
quency of 42 MHz.

This performance is achieved with only using few
resources on the FPGA. A classification module with 32
classification rules using a total of up to 64 criteria only
uses 10% of the logic elements and 5% of the available
memory bits of the used FPGA. A module with 128 rules
using 256 classification criteria still uses only 27% of the
total number of logic elements and 19% of the available
memory.

The used FPGA is outdated. Modern FPGAs contain sig-
nificantly more logic elements and memory bits at pro-
cessing speeds being two to three times faster. These facts
enable the adaptation of the proposed classification mod-
ule to processing rates of 10 Gbps.

The only drawback, however, is that the new Stratix II
FPGA family from Altera does not support CAMs using
the internal memory blocks. However building a CAM
with logic elements is very inefficient and resource-wast-
ing. So we are going to extend the classification module in
order to support an external CAM device. With this exten-
sion the presented packet classifier should be able to pro-
cess packets with up to 10 Gbps when realized on the
Stratix II from Altera.

5 Conclusion and outlook

In this paper we presented a scalable architecture for a
high speed classification module. It enables a network
node to scan data packets on the fly with very low latency
at line speed. With the microprogrammed layer decoder,
the module is easily adaptable to new protocols and ser-
vices on any layer during operation. This flexible classifier
was realized on an FPGA-based platform as part of a traf-
fic measurement system providing important traces for
traffic characterization. The module needs only few FPGA
resources without critical timing performance in the Giga-
bit Ethernet environment.
In our future work we are going to extend the design for
line rates up to 10 Gbps. An additional scan module will
be designed which allows the identification of signatures
at arbitrary positions in the packets. This module will sup-
port the easy identification of higher layer services like
peer to peer traffic or typical patterns for intrusion-detec-
tion systems.

6 Acknowledgement

The authors would like to thank Damir Ferenci for his
contributions to the development, implementation and test
of the I2MP measurement platform containing the classifi-
cation module.

7 References

[1] Kounavis, M., Kumar, A., Yavatkar, R. & Vin, H.,
Line Rate Packet Classification and Scheduling,
Tutorial at Symposium on Architectures for Net-
working and Communications Systems (ANCS),
Princeton, New Jersey, USA, October 2005

[2] Vassiliadis, S., Wong, S., Cotofana, S., Microcode
Processing: Positioning and Directions, IEEE Micro,
Vol. 23, Issue 4, 2003, pp. 21-30

[3] Semeria, C., Implementing a Flexible Hardware-
based Router for the New IP-Infrastructure, Juniper
Networks Inc., White Paper, 2001



[4] Sass, D., Junghans, S. I2MP - An architecture for
hardware supported high-precision traffic measure-
ment, Proceedings of the 13th GI/ITG Conference on
Measurement, Modeling, and Evaluation of Com-
puter and Communication Systems (MMB), Nürn-
berg, Germany, March 2006

[5] Comer, D. E., Network systems design using network
processors, Prentice Hall International, 2006

[6] Lekkas, P. C., Network processors - Architectures,
Protocols and Platforms, McGraw-Hill, 2003

[7] Institute of Communication Networks and Computer
Engineering (IKR), University of Stuttgart, The Uni-
versal Hardware Platform (UHP), http://www.ikr.
uni-stuttgart.de/Content/UHP/


