X XX]
ERAAARLK "
INSTITUT FUR

R Universitat Stuttgart KA IO oNETZE

.":::::::::.:”: Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kilhn

Interner Beric ht/ Internal Repor t N° 56
Titel / Title A Scalab le Architecture f or

Flexib le High-Speed P acket Classification

Xﬁ;La;rS(g/ Simon Hauger, Sascha Junghans,
Martin Kohn, Detlef Sass

Datum / Date 21.12.2006

Umfang/ Siz e 9 Seiten/ Pages

Quelle / Sour ce

Schlussel worte / Classification; Architecture; Broadband; High Speed; Hardware; Implementation;
Keywords Programmable Logic; Reconfiguration; System Design; Table-Look-Up Method;
MAN; WAN

Beitra g der Arbeit / Ac hievement

An architecture of a packet classification unit that is highly flexible and adaptable to new or chan-
ging protocol definitions and classification rules is presented and realization aspects and scalabi-
lity issues of the proposed architecture are discussed.

Kurzfassung / Abstract

Inspection of a packet with respect to certain criteria and subsequent mapping of the packet to an
according category is an essential task in any packet processing system. This is commonly refer-
red to as packet classification. For such packet processing systems new or changing requirements
are coming up continuously as networks and network services are rapidly evolving. So the archi-
tecture of a packet classification unit needs to be capable of processing packets at high speeds in
the network nodes. Furthermore it needs to offer a high flexibility and adaptability with respect to
new or changing protocol definitions and classification rules. Also, in order to meet future require-
ments the scalability of packet classification architectures is very important.

We present an architecture for hardware-based packet classification, that is highly adaptable to
new or changing protocol definitions and classification rules. The architecture is easily scalable
with respect to both processing speed and the number of classification rules. Further, we describe
our realization of the proposed classification architecture integrated into an FPGA based 1 Gbps
high precision network measurement system. Also, we show that our architecture is applicable for
line rates of at least 10 Gbps on current FPGAs. Finally, a discussion of scalability issues of the
proposed architecture and performance and resource utilization measures are presented.

A Scalable Architecture for
Flexible High-Speed Packet Classification

Simon Hauger
Institute of Communication Networks and
Computer Engineering
University of Stuttgart
Germany

simon.hauger@ikr.uni-stuttgart.de

Martin K6hn
Institute of Communication Networks and
Computer Engineering
University of Stuttgart
Germany

martin.koehn@ikr.uni-stuttgart.de

ABSTRACT

Inspection of a packet with respect to certain criteria and
subsequent mapping of the packet to an according category
is an essential task in any packet processing system. This
is commonly referred to as packet classification. For such
packet processing systems new or changing requirements are
coming up continuously as networks and network services
are rapidly evolving. So the architecture of a packet classifi-
cation unit needs to be capable of processing packets at high
speeds in the network nodes. Furthermore it needs to offer
a high flexibility and adaptability with respect to new or
changing protocol definitions and classification rules. Also,
in order to meet future requirements the scalability of packet
classification architectures is very important.

In this paper we present an architecture for hardware-based
packet classification, that is highly adaptable to new or
changing protocol definitions and classification rules. The
architecture is easily scalable with respect to both process-
ing speed and the number of classification rules. Further,
we describe our realization of the proposed classification ar-
chitecture that we integrated into an FPGA based 1 Gbps
high precision network measurement system. Also, we show
that our architecture is applicable for line rates of at least
10 Gbps on current FPGAs. Finally, we thoroughly discuss
scalability issues of the proposed architecture and present
performance and resource utilization measures of FPGA-
based realizations.

Sascha Junghans
Institute of Communication Networks and
Computer Engineering
University of Stuttgart
Germany

sascha.junghans@ikr.uni-stuttgart.de

Detlef Sass
Institute of Communication Networks and
Computer Engineering
University of Stuttgart
Germany

detlef.sass@ikr.uni-stuttgart.de

1. INTRODUCTION

Packet classification is the process of mapping packets to
certain categories and is needed for most network process-
ing systems. For this task, first for each packet the protocol
stack has to be decoded and only then specific protocol fields
can be evaluated by pattern matching based rules. Packet
classification is one of the major tasks of modern packet
processing systems imposing challenging requirements, espe-
cially at the edge of high-speed transport networks. Exam-
ples for packet classification are the assignment of packets
to MPLS paths, flow identification, classification for QoS
and scheduling purposes, observation of firewall rules and
detection of intrusions.

The above application areas of packet classification span a
wide range of the classification criteria regarding quantity
and complexity. This ranges from classification according
to few bits in a packet up to complex and dependent ex-
pressions of numerous criteria.

In modern packet processing systems, packet classification
needs to be performed at full line speed with deterministic
processing delays to avoid loss, additional delay jitter and
additional packet buffers. These systems with link speeds up
to 10 Gbps or more introduce hard constraints to classifica-
tion speed and it therefore still remains an open networking
problem [4].

Further, the lifetime of the node hardware—especially in
core networks—is usually in the range of several years or
even a decade. During this time, protocol definitions may
change and new protocols are developed and introduced. For
applications like intrusion detection and others that require
deep packet inspection it is absolutely necessary to weave
the changes into its rule set for an error-free operation. So,
beside the high data rates to be processed, a high flexibility
and easy adaptation of a packet classification module to new
protocols and changing classification rules is an important
requirement.

To achieve such a high flexibility and adaptability, the con-
cept of microprogramming can be applied. Microprogram-
ming is a concept of enabling the desired flexibility into
hardwired logic circuits. It has been widely used in CISC
microprocessors and is now being rediscovered for the use in
network processing systems [11], [8].

In this paper we present an architecture for a packet classifi-
cation module suitable for high speed packet processing sys-
tems which can automatically decode protocol stacks con-
sisting of a configurable set of protocols. This architecture
allows the flexible adaptation of classification rules by stor-
ing them in content addressable memories. Furthermore, by
deploying the concept of microprogramming and storing this
code in random access memories new network protocols can
be implemented on the fly into the classifier. This usage of
microprogramming together with content addressable mem-
ories lead to deterministic processing times. We also discuss
major scalability aspects and show numerical results of ex-
emplary fittings to current FPGAs. Finally, we show how
the classification architecture has been applied to a high-
performance measurement platform for network traffic [7].

The rest of the paper is structured as follows: Section 2 re-
views the process of packet classification and suitable plat-
forms for classification systems. Section 3 introduces our
architecture for a microprogrammed classification module.
In Section 4, the scalability of the architecture with respect
to the number of classification rules as well as throughput
are discussed. The realization aspects and implementation
results are shown in Section 5. Finally, the paper closes with
conclusions and an outlook to future work.

2. CLASSIFICATION MODULES

In literature several architectures as well as realizations for
hardware-based packet classifiers have been proposed and
discussed. In the following we will review these approaches
with respect to general concepts and implementation as-
pects.

2.1 Classification Review

Packet classification is widely used in many different applica-
tions. Generally, packet classification inspects packets with
respect to certain criteria and maps them to specific cate-
gories [2]. These categories can be interface identifiers for
switching or routing decisions, classes of service for QoS sup-
port or packet filtering rules in a firewall or in an intrusion-
detection system.

In different application fields, classification is often called
differently. In the case of examining the layers two to four to
make switching or routing decisions it is often called lookup.
In the case of examining higher layer protocols the expres-
sion deep packet classification is used [6]. Very high line
rates limit the number of classification rules, while systems
with moderate line rates can support high numbers of clas-
sification rules.

The rules can be represented by multi-dimensional trees
which must be traversed during the classification process
or they can be ordered in a grid of tries. For the ordering
hash values can be used with lookup tables during the iden-
tification process of the rule with the highest priority [4].

Other approaches separate the process of packet classifica-
tion into two parts [10]: the assessment of single fields in
the packets and the deviation of classifications results by
the analysis of the assessment results. The first assessment is
done on behalf of different classification criteria often called
single field matching, the latter by the combination of sev-
eral to classification rules which determine a classification
result. As classification is not limited to certain protocol
fields but could also be used by regarding arbitrary data in
the payload of the packet, therefore we call the first assess-
ment rules in a more general way criteria and not conditions
for single field matching.

The classification criteria can be defined on behalf of dif-
ferent characteristics. They can refer to exact values like
a specific port number or protocol type or they can cover
ranges of values like target or source IP addresses for the
identification of IP subnets or even more complex criteria.
Some criteria check for values of certain bits in a distinct
protocol header like the syn bit of TCP which need the in-
troduction of ”care” and ”don’t care” flags for each bit for
an easy evaluation of parts of a packet field. This behav-
ior can be described with so-called ternary logic and allows
the efficient and compact definition of classification criteria.
If a classification system can not cover ranges by a native
comparison function, they can be covered by using ternary
logic. A specific range must then be represented by several
criteria.

The result of the single field matching phase can be repre-
sented by a large vector with a bit set for each matching
criteria. This representation is often called lucent bit vector
(BV) [5]. In [1] a compression for the processing on pro-
cessor based platforms of the BV is introduced and called
aggregated bit vector.

Many classification systems limit the classification on the
analysis of the 5-tuple (source address — destination address
— protocol type — source port — destination port). A flexi-
ble classification module should not be limited to currently
existing protocols but should be extensible to newly intro-
duced protocols. Communication protocol stacks have in
common, that each protocol must have two fields indicat-
ing the type of its payload and the length of its protocol
header or the protocol has static definitions for one or both
fields. This allows the generalization of classification to any
hierarchical data stream fulfilling these requirements. With
this generalization a classification system needs not to be
limited to specific protocol layers as long as this hierarchical
data stream is fully contained in a single packet. For seg-
mented data streams like the segmentation of IP payload,
the classification engine would need a large state memory
for continuing the classification on following packets.

2.2 Implementation Aspects

For the implementation of packet processing systems sev-
eral basic methods and technologies can be used. General-
purpose processors provide the flexibility for achieving highly
adaptable systems but can not fulfill the high processing re-
quirements and especially the high I/O bandwidth required
in classification systems for high speed transport networks.
Network processors (NPs) are devices which are designed
for high I/O throughput and provide dedicated functions

2 O &?
0\00 \Q\Q’(\\ & \(2,@(\0d
) &
‘ Input ‘ ‘ Next
— -~ ; Processing ...
Stage »Classifier| Stage
Packet Data
y | —Reference

Memory Management

] _— Packet Data
\

Buffer Memory

Figure 1: Typical environment for a classification
module

for packet processing tasks. They can be programmed with
specialized programming languages which allow the efficient
usage of all NP components [2]. As NPs usually have a ded-
icated lookup engine as a monolithic block, the programmer
can not influence the lookup process in detail.

Field programmable gate arrays (FPGAs) and application
specific integrated circuits (ASICs) allow more specialized
logic designs for the processing modules. While FPGAs pro-
vide a very high flexibility because the logic design can be
updated in the system, ASICs are faster and if the number
of produced devices is high enough also cheaper. As the de-
signer can develop system modules on different abstraction
layers and make them very specific, both device types—
FPGAs and ASICs—are very well suited to achieve the re-
quired performance. For the analysis of these BVs different
methods depending on the used technology are known. Of-
ten, content addressable memories (CAM) sometimes with
ternary logic (TCAM) are used in classification modules.
In [9], BV analysis is realized on an FPGA-based platform
using TCAMs.

Classification modules can process each packet in different
ways. If the packet data is sent to the classifier as a data
stream the classifier often scans the whole packet and iden-
tifies all matching classification criteria. Others receive a
reference to the packet location in the buffer memory and
read out the memory at those addresses which are important
for their rules.

The constraints concerning processing delays for the schedul-
ing modules are very strict for systems with high data rates
as all packets must be classified at line speed. This is why
we decided to design a system which does not handle ref-
erences to buffer addresses which can lead to long memory
access times. Instead, it scans a copy of the packets on the
fly without time costly memory accesses.

Figure 1 shows a typical environment for a classification
module with on the fly processing in a logic design.

The packet data enters the system via an input stage. This
input stage forwards the data to the memory management

Criteria- & Rule-Matching Unit

Protocol Criteria Match Result
—| Layering —®| Matching —®| Accu- —® Sz:: -
Decoder ‘ Unit ‘ mulator ‘
N
S & 3 3
X < 2 W <
N il W SN ¢ S
3 ¥ o S o @ O &
2 W &€ N
< N O% @ RO Pt &

Figure 2: Basic structure of the packet classifier

to store the data into the buffer memory. The memory man-
agement returns a unique reference to the stored data. Upon
this the input stage forwards a copy of the packet data as
well as the corresponding reference to the classifier. The
copied packet is scanned by the classifier. The classifier for-
wards the reference and the identified category and if needed
part of the packet data to the next packet processing stage.
Following stages, processing the determined category, use
the reference to access the packet data in memory. This ap-
proach requires strict processing times for each packet but
with these processing times, modules with high throughput
can be assured.

3. CONCEPT AND ARCHITECTURE

In communication systems, the user data is encapsulated in
several different protocols before it is transmitted. As packet
classification is performed usually on matching packet header
fields to certain values, a direct access to each protocol
header and with this to the header fields is rather impor-
tant. Protocols have either specified a fixed header length
or a variable length, so the absolute position of a protocol
field is not always fixed within a packet. Thus, it is almost
not possible to perform the pattern matching without decap-
sulation layer by layer or at least decoding the boundaries
of each protocol header.

Therefore, packet classifiers require an awareness of proto-
cols and its layering within the packets. Many approaches in
literature do not describe how they perform this task. For
our classification module, we have realized such a function-
ality.

In the following sections we describe the concept, main ar-
chitecture and the functionality of the units of our classifi-
cation module. We present the most challenging block, the
microprogrammable Protocol Layering Decoder, in more de-
tail, which is responsible for the protocol awareness of our
packet classifier. We show the high flexibility and adapt-
ability to arbitrary new protocols or protocol extensions.
Finally, we describe the Criteria-&Rule-Matching Unit and
its realization aspects in order to achieve an efficient realiza-
tion and in order to scale the number of classification rules
and criteria.

3.1 Concept

In our packet classification module, the determination of the
classification category is based on classification rules com-
posed of one or multiple criteria, where each criteria corre-
sponds to a single field matching expression. A criteria rep-
resents a searched pattern, mostly a protocol header field, at
a specified position within a packet. This position is not an
absolute position but relative to the start of each protocol.

This means, that our classifier is based on three main func-
tionalities: protocol layering awareness, criteria matching
and identification of the resulting category.

Considering a received packet at the classifier, the data in
the packet can be distinguished into payload and protocol
data. The protocol data represents the hierarchical encap-
sulation of the payload according to the protocol layers, by
adding headers and/or trailers to the payload. The struc-
ture of the protocol headers are defined in the corresponding
protocol specifications.

These protocol specifications have in common that each pro-
tocol must specify the length of its header as well as the pro-
tocol which is encapsulated in it. For both, either dedicated
header fields are used or they are defined in the protocol
specification. These two information are sufficient to de-
code all packet headers for the classification process. So, we
consider a protocol header to be such a structural descrip-
tion and the rest of the packet, which can not be described
in the above sense, to be the payload.

So, the protocol awareness provides the knowledge at which
positions in a packet the different contained protocol head-
ers are located. This enables the handling of protocols with
variable header length as well as of tunneled protocols with-
out any modification of the rule set. Once a protocol can
be described according to the above definition of a proto-
col header, the module is able to detect arbitrarily ordered
encapsulations of the known protocols within a packet.

In our classifier, the protocol fields are addressed relatively
to the start of the protocol the field belongs to. This makes
definition of criteria easy and compact. The packet data is
processed word by word. All criteria are applied to each
data word in parallel.

In parallel to that, all matched criteria are accumulated in
a packet match vector, also known as the lucent bit vector,
until the entire packet is processed. Based on this, the high-
est prioritized matching category is selected. Criteria can
be shared by multiple rules.

3.2 Main Architecture

The main architecture of our classification module consists
of two major blocks the Protocol Layering Decoder and
the Criteria-&Rule-Matching Unit incorporating the above
mentioned three functionalities. The first functionality, the
protocol awareness, is contained in the first block and the
latter two in the second block. These blocks consist of sev-
eral functional units forming a pipeline structure, as de-
picted in Figure 2. Each packet is continuously processed
in multiple bytes wide data words. We describe these func-
tional blocks in the following.

The main task of the first unit, the Protocol Layering De-
coder, is interpreting the relevant fields (e.g., header length
field) of each protocol in order to label each data word with
a distinct index. This index states the current protocol and
the relative position of this data word within that proto-
col layer (e.g., word 2 within protocol UDP). So, this unit
owns the knowledge about all the different protocol layers,
incoming packets might consist of. It is completely micro-

‘ Layer Decoder Control ‘

+t t J H
instruction .
Microcode
Header Length Memory .
3] 2 | Counter
E ‘ ‘ 3 & Index-
« % | Generator
Next Protocol Jump Table
nextprotocol
N
\Y
Packet Data word Indexed Data Word

Figure 3: Basic structure of the Protocol Layering
Decoder

programmable, so that the classification unit can easily be
adapted to changes in protocol definitions or even new pro-
tocols. This unit is described in more detail in the next
section.

The indexed data words are forwarded from the Protocol
Layering Decoder to the Criteria Matching Unit. Here each
data word is compared to a data set consisting of all criteria
that are needed for the classification rules. Because of the
appended index of each word only those criteria that are
relevant for the current protocol and the current position
within that protocol can lead to a match. The result of this
comparison is output in the form of a word match vector,
consisting of zeros at those positions where no match was
found and ones at those positions where a match was found
at the according positions in the data set.

The word match vectors of each data word of a packet are
combined in the Match Accumulator unit. This unit basi-
cally combines the word match vector of each data word with
all previous match vectors of this packet by a bit-by-bit logi-
cal OR. When all words of a packet have been processed, the
packet match vector shows the set of all criteria this packet
complies with.

The Result Unit uses this packet match vector to come to a
decision and assigns the respective category to the processed
packet. This is done by comparing the fulfilled criteria with
all classification rules, and classifying the packet according
to the classification rule with the highest priority that is
adhered to.

3.3 Protocol Layering Decoder

In order to achieve the required flexibility to current and
future protocols our classifier contains a microprogrammable
Protocol Layering Decoder.

The Decoder utilizes the fact that all protocols must con-
tain a field specifying the protocol contained in its payload,
unless this is statically defined. Further, all protocols have
either a fixed header length or contain a field in their pro-
tocol header defining their header length.

The structure of the Protocol Layering Decoder is depicted
in Figure 3. The Microcode Memory contains microcoded
instructions for all supported protocols. The microcoded
instructions contain information about the position of the
header length field or a fixed length as well as the position
of the field specifying the next protocol.

These instructions are interpreted by two functional units
aptly named Header Length unit and Next Protocol unit.
These units extract, process and buffer the respective fields
of the incoming packet data words. The header length is
used to determine when the microcoded instructions for the
following protocol have to be loaded. Also, it is used to
compute the shift value for the Shifter which segments and
aligns the incoming packet such that each protocol header
starts in a new data word. This reduces the complexity in
following functional units.

The extracted header field, containing the information about
the next protocol layer, is forwarded to a Jump Table, where
the address of the corresponding microcode instruction in
the Microcode Memory is determined.

Finally, the Counter- € Index Generator keeps track of the
position of the current data word within the current pro-
tocol. This information is used in the Header Length and
Next Protocol units in order to extract the correct byte fields
of the protocol header. Furthermore the Counter- & Index
Generator uses this information to label each data word with
an index stating the protocol this data word is part of and
the word position within this protocol. This index is used
in the following Criteria Matching Unit as described in the
previous section. The Layer Decoder Control consists of a
finite state machine controlling the cooperation of all units.

As the Microcode Memory as well as the Jump Table are
completely user-programmable this Protocol Layering De-
coder is adaptable to arbitrary new or changed protocol
definitions. There are no constraints about the structure
of the protocol headers except for mandatory fields specify-
ing the following protocol in the encapsulation of the packet
and the current header length unless those are fixed values.

When realizing this decoder on an FPGA or ASIC, the Jump
Table can be implementing using binary content-addressable
memory (CAM), looking for exact matches when looking for
the address for the next protocol instructions.

3.4 Criteria-&Rule-Matching Unit

The Criteria-&Rule-Matching Unit is composed of the Cri-
teria Matching Unit, the Match Accumulator and the Re-
sult Unit. Both the Criteria Matching Unit and the Result
Unit mainly consist of a CAM, called Criteria CAM and
Rule CAM, respectively. These two units use ternary CAMs
(TCAMs) that allow the usage of a third value ‘X’ mean-
ing ”"don’t care” besides the logical ‘1’ and ‘0’. With this
third state irrelevant bit fields within a data word can be
masked out. This is an efficient way to check for different
criteria or to find a final category in those units. The Match
Accumulator is mainly a large register which is called Ac-
cumulator Buffer. The principle realization of the Criteria-
&Rule-Matching Unit is depicted in Figure 4.

The Criteria-&Rule-Matching Unit gets the indexed data
word of a packet from the Protocol Layering Decoder. This
is applied to the Criteria CAM, the entries of which consist
of the index and the actual check pattern. It produces the
word match vector indicating which CAM entries match to
this. Then, the word match vector is combined by a bit-

Criteria CAM Accumulator Rule CAM Priority

Buffer Multiplexer
D—>
:
! ﬁ | A
Index A
Data | / Category

Word Match Vector Packet Match Vector
Figure 4: Principle realization of the Criteria-
&Rule-Matching Unit

by-bit logical OR with all previous matches stored in the
Accumulator Buffer.

When all words of a packet have been processed the Ac-
cumulator Buffer shows the set of all criteria this packet
complies with. This is used to come to a category by apply-
ing it to the Rule CAM, showing all matched rules. Each
entry in the Rule CAM corresponds to one rule and is the
required accumulated packet match vector to be fulfilled for
this rule. The priority multiplexer selects from all matched
rules that rule with the highest priority.

In order to scale the classifier for high data rates and large
numbers of criteria and rules, a critical aspect is the width
of the CAMs. However with increasing the width of a CAM,
its maximum possible operating frequency decreases.

A simple method to circumvent this problem of too wide
CAMs is to split the wide CAM into several less wide CAMs.
Each smaller CAM checks its part of the input vector with
its corresponding part of the original CAM data set. After
that, each result bit of each row of the smaller CAM is then
combined by a logical AND with the corresponding output
bits of all other CAMs. This method is also described in
[11] and can be applied when scaling the Criteria CAM and
the Rule CAM to support wider input vectors.

But often criteria check only few bits in a data word and do
not depend on long bit strings. So large parts of the rows in
the criteria CAMs are mostly filled with ”Don’t Care” bits.
If in this case the CAM is split into several smaller CAMs
with a following AND stage, often entire rows are filled with
”Don’t Care” bits and can thus be avoided.

This is exploited in the concept shown in Figure 5. Each
check pattern entry in the Criteria CAM, i.e., the CAM
entry without the index, is segmented into smaller sub-words
and distributed to the smaller CAMs. The entries of these
smaller CAMs consist then again of replicated index and the
sub-word of the check pattern. Now, the succeeding AND
stage is omitted. The same is applied to the processing
data word which is also segmented into sub-words and the
replicated index is pre-pended. These new small data words
are fed to the smaller CAMs in the order as the data word
is segmented into sub-words.

This approach has multiple advantages. The size of each
check pattern in the smaller CAMs remains still small, en-

Data
Index

CIATBICID] Data Word

| CAM

Sub Data Words

Sub CAMs

Figure 5: Reduction of Criteria CAM size

abling a fine granular definition of the criteria, which can be
reused by other rules. Also, the overall resource consump-
tion is reduced, because the sum of all smaller criteria entries
is smaller than the sum of the large CAM entries due to the
more specific definition possibilities by the smaller criteria.

4. SCALABILITY

Network data rates will continue to increase so the process-
ing rates in network nodes have to speed up in the future as
well. Consequently it is important to examine the presented
classification architecture with respect to its capability to
support higher data rate processing. This will be done in
the last section of this chapter.

Also, more and more network services emerge that have to
be provided at line rate in the network nodes. This means
more rules to check within classification units and conse-
quently also more criteria to check in the Criteria Matching
Unit. The scalability of our classification architecture con-
cerning these issues is discussed in the following two sections.

4.1 Number of Rules

Increasing the number of rules N the classifier can support,
only affects the Result Unit of the proposed architecture.
Here all three logical stages, namely the Rule-CAMs, the
logical AND gates and finally the priority multiplexer have
to be regarded.

The Rule CAMs output a bit vector indicating which rule is
fulfilled given the criteria looked at in this CAM. The depth
of the Rule CAMs corresponds to the number of supported
rules N. Thus with increasing the number of rules also the
CAMs become deeper. In order not to get too deep CAMs,
possibly negatively affecting the routing capability on an
FPGA and thus the classifier’s throughput, each CAM can
be divided into several smaller CAMs each only generating
a bit vector for a subset of all rules. So this stage is scalable
without deteriorating latency and throughput, and the re-
source utilization is linearly proportional to the number of
rules.

In the next logical stage, each logical AND conjunction com-
bines for each rule the corresponding output bits of the pre-
ceding Rule CAMs. When increasing the number of sup-
ported rules N within the architecture, only the number of

such parallel AND gates increases linearly with the num-
ber of rules. Thus throughput and latency of this stage are
independent of the number of rules, too, and the resource
utilization scales with O(IV).

The terminal priority multiplexer selects of all matching
rules that rule with the highest priority. When scaling up
the number of possible rules checked within the classifica-
tion architecture, this multiplexer also has to become larger.
Given N rules the number of its input ports scales with
O(N), increasing its resource utilization also only linearly.
In order to achieve a high throughput several priority mul-
tiplexers can be cascaded with a register at each output,
thus forming a pipelined prioritizing multiplexer. By that
the number of supported rules of the packet classification ar-
chitecture is easily scalable without sacrificing throughput
and only slightly increasing the latency of the system by
introducing a pipelined priority multiplexer. The resource
utilization increases linearly with the number of rules.

The scalability statements above, obviously do not consider
additional minor routing delays or additional minor resource
increases due to physical constraints on an FPGA or ASIC.

4.2 Number of Criteria

The number of supported single field criteria K within the
classification system not only affects the Criteria Matching
Unit. But, as with the number of criteria also the width of
the input word match vector enlarges, also the Accumulator
and the Result Unit have to be modified. More specifically,
the depth of the Criteria CAMs, the width of the Accumu-
lator Buffer, and the width of the Rule CAMs depend on
the number of supported criteria.

Firstly, the number of criteria is commensurate to the depth
of all Criteria CAMs together. To support a higher number
of single field criteria either the depth of each Criteria CAM
can be increased proportionally, or—as with the Rule CAMs
before—they can be subdivided into several parallel Criteria
CAMs each checking only for a subset of the criteria corre-
sponding to its input. Again, the resource utilization scales
with O(K), neither affecting throughput nor latency of the
system.

Also, the accumulating buffer size is linearly proportional
to the overall number of criteria, thus only linearly affecting
the resources.

With an increased number of criteria K, the Rule CAMs also
need to operate on wider criteria vectors. However increas-
ing the width of the CAMs, increases their combinatorial
delay and thus the maximum throughput. So it is better
to use pipelined CAMs or, more easily, several CAMs that
work on smaller subsets of the criteria, and the subsequent
AND stage combines the results for each rule, possibly in
a pipelined fashion. By this the throughput is not affected
by the number of criteria and the system latency is only in-
creased by the depth of the AND conjunction pipeline. The
resource utilization scales linearly O(K) with the number of
criteria K.

Again, additional minor routing delays or resource increases
due to physical constraints are not regarded here.

4.3 Throughput

The throughput of a packet processing system can be char-
acterized by the data rate, measured in bits per second, and
the packet rate, measured in packets per second.

Internally the data rate of the classification module is lim-
ited by the clock rate fox multiplied by the word width
W. The Criteria-&Rule-Matching Unit does not change this
data rate due to its pipelined structure processing one data
word each clock cycle. The Protocol Layering Decoder some-
times delays the processing of data, however. Each time a
boundary between two adjacent protocol headers lies within
a data word, the Protocol Layering Decoder shifts the data
back to such an extent that the new header starts aligned to
the next word boundary. The Ethernet header, for example,
has a length of 14 Bytes, so with a word width of 16 Bytes
the data word containing the Ethernet header also contains
2 bytes of the next protocol layer, e.g. of the Internet Proto-
col (IP). In the next clock cycle, the Layering Decoder shifts
the data back by two bytes, so that the next header, here
the IP header, begins aligned with the beginning of the next
data word.

The maximum internal data rate D¢ of the classification
module therefore computes to the maximum internal data
rate fex - W multiplied by the quotient of the volumes of in-
put data and output data of the Protocol Layering Decoder:

Nhar

Z H,+R
Diny = foe - W - =l

> [fe] [

i=1

Here, the input data volume is the sum of the sizes H; of all
Nnar protocol headers and the size of the remaining packet
R. The output data volume is larger, as each protocol header
size is rounded up to the next multiple of the word size. The
same applies for the remaining packet size.

When computing the external data rate that can be applied
to the classifier, i.e. the external line rate, also the minimum
guard time between succeeding packets (e.g., the Ethernet
inter-framing gap) has to be considered. The external data
s Nhdr g,y RyG
G is the number of bytes equivalent to the minimum guard
time between two packets (e.g. for Ethernet links G = 12
bytes). So the external maximum data rate Dex: applicable
to the classifier is:

rate therefore increases by the factor , here,

Nhar
> Hi+R+G
Dext:fclk'W' Nia =1
[H; R
> [v [| w

i=1

Both, the internal and the external data rate increase if
the Protocol Layering Decoder is modified in a way that

only the protocol headers are processed, starting with the
next packet as soon as all relevant headers of the current
packet are processed. With this modification of the Protocol
Layering Decoder the external throughput computes to:

Nhar

> Hi+R+G
Dext,mod = fclk : W . =1

SR

The maximum packet rate Pex¢ of the classification module
is the data rate divided by the size of the regarded packets
(including guard time):

fclk

Sl [l

i=1

With the formulas above it can be seen, that in order to
increase the throughput of the classification module two ap-
proaches or a combination of them can be considered. One
approach is to increase the clock rate fcx of the system. To
be able to do this either an ASIC solution or future high
performance FPGAs have to be used. The other approach
to speed up the throughput of the system is to increase the
word width W and thus the number of bytes processed in
each clock cycle. This affects both the Protocol Layering
Decoder and the Criteria-&Rule-Matching Unit of the clas-
sifier.

However, increasing the word width of the Layer Decoder
to much more than 16 Bytes is not reasonable, as this also
increases the overhead of redundant bytes at the end of each
protocol layer and thus also negatively affects the through-
put. To circumvent this drawback, the Layer Decoder could
be changed in a way that it can process more than one pro-
tocol within one data word and thus within one clock period.
However this would dramatically increase the complexity of
this unit, thus pushing up the resource utilization and de-
creasing the maximum possible clock frequency.

Another way to increase the number of bytes processed in
each clock cycle, might be to replicate the entire Layer De-
coder Unit several times and to distribute the incoming
packets between those units. This would entail the need
of buffers in front of and after the Protocol Layering De-
coder, that have to be carefully dimensioned. Also packet
ordering had to be considered in this case.

The back part of the presented architecture, the Criteria-
&Rule-Matching Unit can be scaled to a higher throughput
per clock cycle in both of the above mentioned ways. The
word width of the parallel CAMs might be increased or the
complete classification part might be replicated as the layer
decoder above. By increasing the word width of the parallel
CAMs, even more CAMs have to work in parallel, thus not
negatively affecting their possible maximum clock rate.

45,000

40,000f .
35,0001
30,000

o 25,000

slice

20,000

15,000
10,000

5,000f 1

%4 128 256 512
criteria

Figure 6: Resource utilization with different num-
bers of criteria and 64 rules (dashed) and 128 rules
(solid)

5. APPLICATION ON FPGA

The presented classification module has been implemented
in VHDL and synthesized for configuration of FPGAs. We
developed the VHDL design as generic as possible in order
to easily implement differently scaled classification modules.
Further, this allows us to synthesize the design for both
Altera and Xilinx FPGAs.

In this section, we first present results of case studies in or-
der to quantify the resource consumption of our classifier
when used as a module in an FPGA as well as to validate
the complexity estimations presented in the last section. We
consider scenarios with different numbers of criteria and dif-
ferent numbers of rules. Then, we show the successful appli-
cation of the classification module in our high-performance
Internet measurement platform which uses the classifier for
filtering purposes.

5.1 Implementation Results

In this section, we present results of numerical case studies.
For this, we synthesized, mapped, placed and routed a mul-
titude of variants of our implemented classifier module for
the configuration of a Xilinx Virtex IV FPGA.

In order to achieve a high throughput the protocol layering
decoder unit works with a word width of 128 bits in all tested
classification modules. The 128 bit wide output is separated
into four 32 bit wide sub-words that are processed in parallel
in the subsequent criteria CAMs.

We vary the number of criteria between 64 and 512. This is
realized by increasing the number of CAM entries checked in
parallel in the four criteria CAMs. The accumulated match
bit vector with a width equal to the number of checked crite-
ria is then further processed by several rule CAMs followed
by the AND stage and a priority multiplexer. Here, we use
a range of 16 to 256 for the number of possible rules of the
test-wise realized classifiers.

45,000

40,000f J

35,000(1

256 criteria

128 criteria . _ - - -----~
10,000¢ LR |

16 32 64 128

Figure 7: Resource utilization with different num-
bers of rules and 128 criteria (dashed) and 256 cri-
teria (solid)

The different classification unit variants were synthesized for
a XILINX Virtex IV FX100-11 and LX200-11 using Preci-
sion Synthesis from Mentor Graphics for synthesizing the
net lists and the ISE software from Xilinx for the Place and
Route. While for almost all configurations the results are
equivalent for both FPGAs, the large classifiers with 512
criteria and 256 rules only fit into the LX200-11 variant of
Virtex-1V.

Figure 6 depicts the resource utilization versus the number
of criteria ranging from 64 up to 512. We plot the results for
classification units with 64 and 128 rules. The number of oc-
cupied "slices” (basic logical elements) within the FPGA is
increasing almost linearly with the number of criteria. This
supports the predication of linear scalability of our classifier
with respect to the number of criteria as stated in chapter 4.

In Figure 7, we show the resource utilization versus the num-
ber of rules ranging between 16 and 128 rules. We plot the
results for classification units supporting 128 or 256 criteria.
Again, the linear scalability of the classification architec-
ture referring to the number of supported rules, as claimed
in chapter 4, is demonstrated.

Furthermore, our synthesis experiments have also shown
that currently the longest combinatorial path within the
classification unit which limits the maximum clock frequency
lies always within the protocol layering decoder. As this
unit is independent of the number of rules and criteria, all
realized classification units have similar performance results
with respect to throughput. All mentioned variants support
a clock rate of approximately 60 MHz. For a word width of
128 bits this corresponds to a data rate of 7.68 Gbps after
the protocol layer decoder. For a mean packet length of 200
Byte including Ethernet, IP and TCP Headers as well as
considering the Ethernet inter-framing gap, a throughput of
approximately 20 Gbps can be achieved.

5.2 Prototype

The classification module is successfully applied in a high-
performance Internet measurement platform, the I*MP [7].
The measurement platform is built up on the UHP (Univer-
sal Hardware Platform) [3] of the authors’ institute. This
platform provides a rather old FPGA from Altera (APEX20K
400CB652-C7) and several communication interfaces, like
electrical and optical Gigabit Ethernet interfaces.

This measurement platform has been designed to record se-
lected areas of the packet headers. As this selection must
be done based on the content of the packet, we first clas-
sify all incoming packets using this classification module.
Despite the rather old FPGA technology used for this ap-
plication, it is still possible to perform all packet processing
tasks, including the classification, at full Gigabit Ethernet
line speed.

Within the measurement platform, the classification mod-
ule is operated at a clock frequency of 42 MHz and a word
width of 32 bits. With this clock frequency classification
can be performed of up to 2.2 million minimum-sized Eth-
ernet packets in one second. This performance is achieved
with only using few resources even on this outdated FPGA.
A classification module with 32 classification rules using a
total of up to 64 criteria only uses 10% of the logic elements
and 5% of the available memory bits of the used FPGA.

Unfortunately modern Altera FPGAs like Stratix II and Cy-
clone II do not support the effective realization of TCAMs
within the FPGA, so higher throughput classifiers can not
be implemented on Altera FPGAs.

6. CONCLUSIONS

In this paper we presented a scalable architecture for a high
speed classification module. It enables a network node to
scan data packets on the fly with very low latency at line
speed. With the microprogrammable Protocol Layering De-
coder, the module is easily adaptable to new protocols and
services on any layer during operation. This flexible classi-
fier was realized on an FPGA-based platform as part of a
traffic measurement system providing important traces for
traffic characterization. The module needs only few FPGA
resources without critical timing performance in the Gigabit
Ethernet environment. Also, case studies have shown that
the architecture is scalable up to data rates of 10 Gbps with
only minor modifications.

In our future work selected modules will be doubled and op-
erated in parallel in order to increase the data rate further.
Also, an additional scan module shall be designed which al-
lows the identification of signatures at arbitrary positions
in the packets. This module will support the easy identi-
fication of higher layer services like peer to peer traffic or
typical patterns for intrusion-detection systems.

7. ACKNOWLEDGMENTS

The authors would like to thank Damir Ferenci and Arthur
Mutter for their contributions to the development, imple-
mentation and test of the I’MP measurement platform con-
taining the classification module.

8. REFERENCES
[1] F. Baboescu and G. Varghese. Scalable packet
classification. In SIGCOMM ’01: Proceedings of the
2001 conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 199-210, New York, NY, USA,
2001. ACM Press.

[2] D. E. Comer. Network Systems Design using Network
Processors. Prentice Hall International, 1. edition,
2006.

[3] Institute of Communication Networks and Computer
Engineering. The Universal Hardware Platform
(UHP), 2005.
http://www.ikr.uni-stuttgart.de/Content/UHP/.

[4] M. Kounavis, A. Kumar, R. Yavatkar, and H. Vin.
Line rate packet classification and scheduling. In
Proceedings of the Tutorial at Symposion on
Architectures for Networking and Communications
Systems (ANCS), Princeton, New Jersey, USA, Oct.
2005.

[5] T. V. Lakshman and D. Stiliadis. High-speed
policy-based packet forwarding using efficient
multi-dimensional range matching. In SIGCOMM ’98:
Proceedings of the ACM SIGCOMM ’98 conference on
Applications, technologies, architectures, and protocols
for computer communication, pages 203—-214, New
York, NY, USA, 1998. ACM Press.

[6] P. C. Lekkas. Network Processors: Architectures,
Protocols and Platforms. McGraw-Hill, 2003.

7

D. Sass and S. Junghans. I2MP - an architecture for
hardware supported high-precision traffic
measurement. In Proceedings of the 15th GI/ITG
Conference on Measurement, Modeling, and
Evaluation of Computer and Communication Systems
(MMB), Nrnberg, Mar. 2006.

[8] C. Semeria. Implementing a flexible hardware-based
router for the new ip infrastructure. JuniperNetworks
Inc., White Paper, August 2005.

[9] H. Song and J. W. Lockwood. Efficient packet
classification for network intrusion detection using
fpga. In FPGA ’05: Proceedings of the 2005
ACM/SIGDA 13th international symposium on
Field-programmable gate arrays, pages 238-245, New
York, NY, USA, 2005. ACM Press.

[10] J. van Lunteren and T. Engbersen. Fast and scalable
packet classification. Selected Areas in
Communications, IEEE Journal on, 21(4):560-571,
2003.

[11] S. Vassiliadis, S. Wong, and S. Cotofana. Microcode
processing: Positioning and directions. Micro, IEEFE,
23(4):21-30, 2003.

