

Unterstützung der Privatsphäre in mobiler IP-basierter Kommunikation

Christian Hauser
Institut für Kommunikationsnetze und Rechnersysteme
Universität Stuttgart
hauser@ikr.uni-stuttgart.de

08.06.2005

Outline

Motivation
Threat Analysis
A New Approach
Conclusions and Future Work

Collection of Context Data

- ▶ Ubiquitous use of platform → many different applications
 - Detailed traces of context data combined by context management
 - Real World (e.g., location)
 - Applications
 - → Privacy Risk!

Context-Use Without Protection

Privacy Protection Approach (1)

Privacy Protection Approach (2)

Privacy Protection Approach (3)

Privacy Protection Approach (4)

Privacy Protection Approach (5)

Privacy Protection Approach (6)

Example and Focusing

Privacy approach

- use of multiple (virtual) identities, VIDs
- tune amount of disclosed data in context of each identity separately

Example and Focusing

- Privacy approach
 - use of multiple (virtual) identities, VIDs
 - tune amount of disclosed data in context of each identity separately
- Pitfall: Augmentation of a VID

Two possibilities: Linking of several VIDs

Example and Focussing

Privacy approach

- use of multiple (virtual) identities, VIDs
- tune amount of disclosed data in context of each identity separately
- Pitfall: Augmentation of a VID

Two possibilities: Linking of several VIDs and inference of data

Example and Focusing

- Privacy approach
 - use of multiple (virtual) identities, VIDs
 - tune amount of disclosed data in context of each identity separately
- Pitfall: Augmentation of a VID

Two possibilities: Linking of several VIDs and inference of data

- application data
- data of communication system
- Focus on IP based communication system

Problem Statement

Protection Goals

- Unlinkability of VIDs
 trace cannot be enriched by information of several VIDs
- Limitation of trace
 short trace alleviate inference danger
- → Violation of both: More knowledge at the attacker than user wants
 --> against right on informational self-determination

Potential Attackers

- Communication partners
 other (private) users or service providers
- Providers of the communication systems
 - can be forced to disclose information (legal interception)
 - can be hacked
 - may be not trustworthy (according to "Internet Model" everybody can be provider, i.e., provide a Home Agent)

Threat Analysis

Fundamentals

- Packet based communication: Two basic pieces of information
 - identifier: indicates which device is addressed
 - may be chosen arbitrarily (thus without containing any sensitive information)
 - known to communication system and communication partner
 - locator: indicates where packet must be delivered to
 - inherently contains location in terms of network topology which can be mapped to (sensitive) geographical location in IP
 - must be known to communication system
 - does not have to be known to communication partners
- Comparison: Classical IP

both pieces of information collapse into the IP address

- Comparison: Mobile IP
 - home address is a kind of identifier
 - care-of address is a kind of locator
 - (but: home address is locator to user's home and care-of address is known to communication partners in case of route optimization)

Abstraction of the linking problem

- (Many) VID contexts of the user are inherently merged
 - behind all VIDs is only one user
 - everything that leads to the (real) user is dangerous wrt. link of VIDs (and often regarding privacy in general)
- Real-world attributes, reflected in the system
 - location, location changes (movement), network connection, ...
 - global use patterns
 - sleeping times, working times, ...
 - → attributes, which are identical for all VIDs of same user
 - → danger rises with decrease of number of users having the attribute
- Contrast
 - communication sessions not dangerous wrt. to link
 - ⇒ can be different for each VID
 - ⇒ rather similar for VIDs of different users (e.g., when using same service)

Concretion of linking problem to communication

- Real-world user behaviour reflected in locator, reflecting
 - location, movement, network connection
 - (vertical handover models, ...)

Remarks

- there exist more unique attributes (e.g., one identifier/locator/interface per user)
- could be solved by technical systems the real-world things can't

Inference

Question: Where is sensitive information contained?

- 1. In identifier: Home of user (usually)
- 2. In locator: Location, network connection
- 3. In locator changes: Movement behaviour

Threat Analysis

Summary

Linking of VIDs	Threats in fixed scenario	Additional threats in mobile scenario
	LinkF: Identical data in context of VIDs Example: Identical identifier, identical locator	LinkM(1): Identical behavior of VIDs observed by identical patterns of data or events Example: Change from identical old locator to identical new locator
		LinkM(2): Identical behavior of VIDs observed by similar patterns of data or events Example: Simultaneous locator changes with unknown locators
Inference of personal informa- tion	InfFI: Inference from the identifier Example: home of VID	No additional inference from the identifier
	InfFL: Inference from a single locator Example: Location of the user at communication time	InfML(1): Inference from several locators Example: Location trace of a user over a period of time
		InfML(2): Inference from user behavior by locator changes Example: Inference of activity by rate of locator changes

System Approach

- Different networks supposed to be operated by different parties
- Separate contexts for VIDs throughout packet's path
- Two agents in a row: no entity knows both, identifier and locator
- Locator invisibly stored when not needed
- Home Agents HA2-x are changed frequently
- Identifiers not from home netw. but from different, arbitrary networks
 Each of those networks operates a "Home Agent"
- User can configure trade-off between performance and privacy

Conclusions and Future Work

- Future context-aware systems need suitable privacy protection approach of multiple VIDs very promising
 - support by communication system necessary
 - new threat implied: Linking of VIDs
- Threat analysis regarding communication system
 - mobility adds significantly to threat
 - ➡ solution must be especially designed for multiple identities and mobility
- Existing proposals not well prepared
- New approach
 - solves or at least alleviates all identified problems
 - user in control of trade-off: costs vs. privacy
- Future work
 - realization of proof-of-concept
 - quantification of protection vs. costs
 - evaluation of sensible configurations