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Kurzfassung

Technologien wie 5G und IoT werden neue, volatilere Netzdienste ermöglichen, deren Verhalten das Verkehrsaufkom-
men in künftigen Kommunikationsnetzen erheblich verändert, sodass diese zunehmend flexibler und effizienter betrieben
werden müssen. Um die Auswirkungen dieser Entwicklungen untersuchen zu können, werden ausreichend präzise Mod-
ellierungsansätze benötigt, welche das dynamische Verhalten unterschiedlicher Netzdienste abbilden können. In dieser
Arbeit wird ein derartiger Ansatz vorgestellt und dessen Anwendbarkeit zur Untersuchung von Weitverkehrsnetzen an-
hand einer Beispielstudie demonstriert. Gegenstand dieser Studie ist die Ermittlung des Ressourcenbedarfs eines Multi-
Layer-Netzes durch Optimierungsheuristiken.

Abstract

Technologies such as 5G and IoT will give rise to novel network services that will drastically change the behavior of
traffic demands in future telecommunication networks which will have to become more flexible and more efficient to
deal with the increasing traffic volatility. In order to study the effects of these changes, sufficiently precise modeling
approaches which reflect the dynamic behavior of diverse network services are required. In this work we present such
an approach and demonstrate its applicability to the study of wide area networks by an example evaluating the resource
requirements of a multi-layer network through optimization heuristics.

1 Introduction

Internet service providers (ISPs) today face a number of
social, economic and technological factors which are ex-
pected to drastically change the network landscape of the
near future. In the private sector the number of connected
devices is growing rapidly through the widespread adop-
tion of streaming appliances, smart home applications and
wearables while big data analytics, cloud computing and
cloud storage are becoming essential tools in the business
sector. Furthermore, novel use cases such as the Internet
of Things (IoT) and augmented or virtual reality applica-
tions are expected to be among the fastest growing traf-
fic contributors while requiring low end-to-end delay. In
terms of volume, however, inter-data center traffic will be
the dominant component of future traffic accounting for
more than 50 % of all IP traffic in 2021. The second largest
component will be video services which are forecast to ac-
count for about 39 % of all IP traffic, and will continue to
grow at a rate of 26 % per year1 [1]. In combination with
new access-technologies such as FTTx and 5G, which will
increase data rates and promise significantly reduced de-
lays [2], the traffic in ISP transport networks will not just
increase in volume, but also become much more volatile
and delay-sensitive.
For the development of network architectures and algo-

1Compound Annual Growth Rate 2016–2021

rithms, that are capable of handling future network traffic
requirements, a suitable traffic demand model is necessary.
This model must be able to deal with various service types
each having different requirements in terms of Quality of
Service (QoS) parameters, required data rate and possible
endpoints. Due to the increased volatility of future traffic
demands the model must also represent the temporal traffic
behavior.
We propose a traffic demand model and algorithm for the
generation of dynamic traffic demand matrices for wide
area networks. The model is based on the fact that different
types of services exist in a network, each having different
requirements in terms of QoS and possible endpoints. For
example, traffic that originates from data center replication
will only exist between nodes that are connected to a data
center whereas voice traffic is likely to exist between any
node pair. The model allows for the flexible adjustment of
service shares and overall peak traffic. This is an important
requirement because it allows for the generation of demand
matrices that resemble different load situations.
This paper is structured as follows. Section 2 gives a brief
overview on aspects and requirements of traffic demand
generators and outlines existing approaches. Section 3 de-
scribes our traffic modeling approach. Section 4 presents
an example how the model can be parametrized based on
publicly available data. Section 5 shows, how the model
can be used in network-level simulations. Section 6 pro-
vides concluding remarks.



2 Traffic Modeling for Wide Area
Networks

Obtaining traffic demand matrices is a known problem in
the network community. There are sources for measured
demand matrices and also various models that can be used
for the synthesis of demand matrices. Publicly available
demand matrices like in [3] and [4] serve as a starting point
for the analysis of traffic characteristics. However, they are
taken from research networks and therefore not all of their
characteristics can be transferred to the traffic in a commer-
cial ISP network, that is composed mainly of consumer and
enterprise data. Also, the available traffic demand matri-
ces do not distinguish between different service types, but
only measure the overall traffic amount between the net-
work nodes. Hence, traffic characteristics can not be de-
rived from these measurements alone and therefore other
models must be incorporated.
Traffic characteristics can be divided into two parts,
namely temporal and spatial aspects [5]. A simple yet
powerful approach for modeling the spatial distribution of
traffic in the network is the gravity model [6]. It assumes
that the amount of traffic between two nodes in the net-
work scales proportionally with the product of the number
of users connected to those nodes and reciprocally with the
squared distance between them. The authors in [7] also
employ the gravity model. However, they distinguish be-
tween three traffic types, namely voice, transaction data
and Internet traffic, and model each of them in a slightly
modified way. Both models assume symmetric traffic de-
mands between the nodes, i. e. the volume from node u to
node v is the same as from v to u. On the contrary, the
Independent-Connection (IC) Model in [8] models traffic
as bidirectional connections with an adjustable ratio of up-
and downstream traffic. This aspect is of particular interest
to us because the majority of today’s traffic is asymmet-
ric in nature [9]. Take for example video streaming with a
high downstream and a low upstream data rate.
Considering temporal aspects, the IC Model also intro-
duces the idea of time-varying activity levels for each node.
We will transfer this idea to the individual service types.
Furthermore, we adopt the approach introduced in [10] that
models the temporal traffic behavior as a dynamic cyclo-
stationary process. This process consists of a determinis-
tic component that models diurnal patterns and a random
component that represents fluctuations over time. The di-
urnal behavior of Internet traffic becomes evident in the
traffic traces of Internet exchange (IX) points like DE-CIX
[11]. In our model, the variance of the demand’s random
component is determined by the number of users related to
this demand. In this way, demands with a high aggregation
level are less volatile than demands with a small aggrega-
tion level.
A software implementation of a generator for dynamic de-
mand matrices has been developed in the framework of
the DISCUS project [12, 13]. The generator distinguishes
different services. However, demands are modeled in a
bottom-up approach and the adjustment of overall traffic
shares per service and peak hour traffic is not possible.

All the literature presented here provides important aspects
fulfilling some of our requirements for a dynamic, diverse
service-aware traffic demand model. However, to the best
of our knowledge, there does not exist a single model that
combines all the aspects we mentioned here.

3 Demand Modeling and Genera-
tion Approach

The model is intended to describe traffic demands between
nodes in wide area networks. In our case, a single traffic
demand denotes the maximum data rate that needs to be
provided between a source node and a target node during
a specific time interval. All traffic demands between any
pair of nodes in a network form a traffic demand matrix.
Eventually, the model is used to generate traffic demand
matrices for consecutive, fixed-length intervals.
To be more precise, let the network consist of a set of
nodes V and further let E = V ×V be the set of all node
pairs. Each node v ∈ V is annotated with its geographical
location lv and corresponding time offset ∆v w. r. t. a pre-
specified reference timezone. Furthermore, the number of
connected users yv and a set of features Bv are assigned to
each node. Possible examples for features are a data cen-
ter or an Internet exchange point which are connected to
that node. Let B be the set of all features that exist in the
network, i. e. B = ∪v∈V Bv. In general, the set of nodes that
provide a feature b ∈ B is a proper subset of V , i. e. not
all nodes provide feature b. Especially in networks that
consist of nodes of different aggregation levels, this is the
case. Therefore, in addition to the number of directly con-
nected users, nodes also have aggregated user counts yv,b
for each feature b ∈ Bv. These user counts are computed
with a nearest neighbor approach from the node locations
lv and user counts yv of the different nodes. For a feature
b ∈ B, the users yv of each node v are assigned to the geo-
graphically closest node providing b. A node providing b
assigns its users to itself. Hence, the aggregated users are
given by

yv,b = ∑
u∈Vv,b

yu (1)

where

Vv,b =

{
u ∈V : argmin

w∈V :b∈Bw

d((u,w)) = v

}
(2)

is the set of nodes in V assigned to v for the feature b and
d((u,w)) is the geographical distance between u and w.
Let S be the set of service types in the network, for ex-
ample Video on Demand (VoD), gaming, data backup etc.
Each service type is characterized by a usage profile ps, a
downstream traffic portion fs and its total traffic share ρs.
Additionally, a service can require one feature bs,source at
the source node and one feature bs,target at the target node.
A traffic demand exists between a node pair only if both
source and target provide the requested features. For ex-
ample, VoD is typically provided through Content Delivery



Networks (CDNs). Therefore, traffic demands of a VoD
service can be modeled to only exist between a node pair
(u,v) for which v comprises a CDN data center.
Directed traffic demands are created between every two
distinct nodes u,v ∈ V,u 6= v. For each discrete point in
time t ∈ T ⊂ N the output of the model is a set of traffic
demand matrices {Xs(t) ∈ R|V |×|V |≥0 : s ∈ S}. Each matrix
Xs(t) consists of the traffic demands xe,s(t) of service type
s between the different node pairs e = (u,v). As mentioned
above, for all matrices the elements xe,s(t) on the main di-
agonal, i. e. with e = (u,u), are zero.
The downstream traffic portion fs is a value between zero
and one as defined in [8]. For a demand from node u to
node v, it defines how much traffic flows in downstream
direction, i. e. from v to u. The remaining 1− fs traffic
units flow in upstream direction from u to v. This allows
us to model asymmetric services like data backups or VoD
properly. The temporal behavior of the service is derived
from its usage profile. This profile is a deterministic func-
tion ps : T → [0,1] that assigns the usage of the service to
each point in time t ∈ T . The application of a deterministic
profile is motivated by the fact that, in wide area networks,
we are dealing with highly aggregated traffic demands of
hundreds or thousands of users per node. Hence, the us-
age profile corresponds to the average user activity. Due to
the diurnal behavior of the traffic in wide area networks it
is, in practice, sufficient for a usage profile to describe the
time frame of one day. Since real traffic demands are not
deterministic we add a random term ne,s(t), drawn from
a normal distribution that is centered at zero, to the pro-
file values. This approach is comparable with the dynamic
cyclo-stationary model in [10]. The standard deviation σe,s
of the distribution increases linearly when the product of
the number of connected users at source u and target node v
decreases. This results in volatile traffic demands for node
pairs with few users and rather smooth demands for node
pairs with many users. More concretely, the standard devi-
ation is calculated by

σ(u,v),s =
σmax−σmin

ŷmax− ŷmin
(ŷmax− ŷ(u,v),s)+σmin (3)

where

ŷmax = max
u′,v′∈V,b1,b2∈B

yu′,b1yv′,b2 (4)

and

ŷmin = min
u′,v′∈V

yu′yv′ (5)

are the maximum and minimum user product in the net-
work, respectively,

ŷ(u,v),s = yu,bs,sourceyv,bs,target (6)

is the user product of nodes u and v for the requested fea-
tures, B is the set of all existing features and σmax and σmin
are model parameters. The variables yu,bs,source and yv,bs,target

represent the number of users at source and target node, re-
spectively, aggregated according to the required node fea-
tures. In case no source or target feature is specified for a
service, yu,b and yv,b fall back to yu and yv, respectively.

At time step t the preliminary and undirected traffic de-
mand of service s between the node pair e = (u,v) is cal-
culated by

x′e,s(t) = max
(
(ps(t +∆v)+ne,s(t) ·σe,s) · ŷe,s

d(e)2 ,0
)

(7)

where d(e) is the geographical distance between the node
pair. The maximum operation ensures non-negativity of
the traffic demand. This step defines a first set of traffic be-
tween all node pairs in the network. It considers the node
features and the scaling based on the number of users at
the nodes. However, it does not include the correct scal-
ing between the individual service types. Therefore, in the
next step, the shares between the services are adjusted. To
this end, the traffic of service s is normalized by the to-
tal amount of traffic generated by that service between all
node pairs and at all time steps. Subsequently, the traffic is
scaled with the desired share ρs for this service type. We
get

x′′e,s(t) = x′e,s(t)
ρs

∑t ′∈T,e′∈E x′e′,s(t
′)

(8)

from which we can compute the corresponding up- and
downstream demands x′′e,s(t) · (1− fs) and x′′e,s(t) · fs, re-
spectively. In the next step, the upstream demand between
the nodes u and v and the downstream demand between v
and u of each service can be added, because they have the
same direction, i. e.

x′′′(u,v),s(t) = x′′(u,v),s(t) · (1− fs)+ x′′(v,u),s(t) · fs. (9)

In the last step the peak hour traffic, i. e. the sum of all
demands maximized over all points in time, is adjusted by

xe,s(t) = x′′′e,s(t)
m

maxt ′∈T ∑s′∈S,e′∈E x′′′e′,s′(t
′)

(10)

where m is the desired peak hour traffic value.

4 Application Example

This section provides an example of how to use the given
modeling approach to create a meaningful traffic scenario
and how it can be used to perform network-level studies.

4.1 Network and Traffic
We present an example application of the model for the US
backbone network "Abilene" found in the SNDlib [3]. The
network consists of 12 nodes and 15 links and is depicted
in Figure 1. We describe the modeling of the network pa-
rameters and of the services and give an overview of the
resulting traffic demands over one weekday.
The number of connected users at each node is derived
by summing up the population of the surrounding states
[14] as shown in Figure 1. As features we select data
centers and Internet exchange points. Data centers are
placed according to the data center locations of Google
[15] and Amazon [16]. Internet exchange points are lo-
cated in New York City, Chicago, Houston and Sunnyvale



Figure 1 US research network topology "Abilene" with
user assignment.

Table 1 Parameters for the Abilene network.

City Node Users Features
Time
Offset

Atlanta A1 1,000,000 0 h
Atlanta A2 57,302,298 DC 0 h
Chicago CH 37,282,134 IX −1 h
Denver DN 9,731,604 −2 h
Houston HS 39,903,893 IX −1 h
Indianapolis IP 22,779,616 DC 0 h
Kansas City KC 12,030,934 DC −1 h
Los Angeles LA 28,872,666 −3 h
New York City NY 43,665,044 IX 0 h
Sunnyvale SN 25,868,199 DC, IX −3 h
Seattle ST 14,315,955 DC −3 h
Washington, D.C. WA 30,799,502 DC 0 h

which matches the locations of the DE-CIX [17] and AMS-
IX [18] exchange points. Table 1 summarizes the network
parameters. As reference timezone we choose the Eastern
Time Zone. The locations of the nodes can be found in the
SNDlib [3].
The modeled service types together with their overall traf-
fic shares are based on information found in the Visual Net-
working Index 2016–2021 [1] and the Global Cloud Index
2016–2021 [19] issued by Cisco. The two reports contain
detailed estimations of IP traffic in the United States for the
years 2016 to 2021. The traffic estimated in the reports can
be divided into the categories consumer, business, inter-
data center and intra-data center. While the last traffic cat-
egory exists only inside the data center and is not relevant
for us, the first three constitute all IP traffic that also flows
through wide area networks. We modeled this traffic by 10
different service types listed in Table 2.
Internet Video includes services like Netflix, YouTube or
Amazon Video to name the three biggest providers [9]. The
service Consumer Miscellaneous contains all consumer
traffic that is not modeled by IPTV, Internet Video or Gam-
ing. For business traffic we assume that all video traffic
originates from Video Conferencing and that Backup and
Business Miscellaneous have equal shares. Further we as-
sume that 25 % of the data center traffic account for con-
nections between data center and Internet exchange while
the remaining 75 % of the traffic flow between data centers
only. We further detail the inter-data center traffic by mod-
eling two service classes, namely DC–DC (H) without de-
lay requirements and DC–DC (L) with delay-requirements.
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Figure 2 Usage profiles for the modeled services.

The downstream traffic portions fs are derived from [9] in
the cases of IPTV and Internet Video and from [20] for
Gaming. For all other services we used assumptions based
on own estimates. The usage profiles ps are derived from
the default model of the traffic generator developed in the
DISCUS project [12, 13]. In the DISCUS traffic genera-
tor the activity, w. r. t. different service types, of individual
users is computed based on probability distributions. These
distributions model the start time and duration of the ser-
vice usage as well as the number of repetitions per day and
the gap between successive service usages. For this exam-
ple we use the distributions to create activity profiles for
1,000,000 users. For a service s, the sum of the individual
activity profiles forms a usage profile ps. The usage pro-
files of the data center services are assumed to be constant.
Figure 2 shows all the usage profiles of this example. The
minimum value is set to 0.1 because it is unlikely that a
service is completely unused for a longer period of time.
Using the described parameters, we generated traffic de-
mand matrices for one weekday with an interval of 15 min-
utes. Figure 3 shows stacked plots of the dynamic behavior
of the individual services for the years 2016 and 2021. In
these plots, the demands between all node pairs have been
aggregated. The peak hour traffic grows from 48 Tbps in
2016 to 170 Tbps in 2021. As can be seen, the two major
components are data center and video traffic. Video traffic
is also the dominating part during the afternoon and night
hours. Due to the four different timezones the network
spans, even long after midnight the demand level is high.
Figure 4 shows the fraction of delay-sensitive traffic de-
mands for each time step. The fraction ranges from 15.0 %
to 26.5 % in the year 2016 and from 16.1 % to 28.7 % in
2021. As can be seen, the share of delay-sensitive demand
in 2021 will be larger than 2016 during the late morning
and noon hours and also during the night hours. This in-
crease is mainly driven by the growth of delay-sensitive
video conferencing and gaming demands.

4.2 Delay Classes and Hardware
In order to evaluate the effects of different delay-
requirements we have varied the maximum allowed delay



Table 2 Parameters of the modeled services.

Service
Required
Features

Downstream
Portion Share

Delay-
Sensitive

Source Target Year 2016 Year 2021

Consumer
IPTV 0.98 12.1 % 8.8 % Yes
Internet Video 0.95 31.0 % 25.1 % No
Gaming 0.8 0.7 % 2.9 % Yes
Miscellaneous IX 0.75 6.2 % 3.2 % No
Business
Backup 0.1 2.0 % 1.2 % No
Video Conferencing 0.5 4.1 % 5.1 % Yes
Miscellaneous IX 0.75 2.0 % 1.2 % No
Data Center
DC–DC (H) DC DC 0.5 27.2 % 34.1 % No
DC–DC (L) DC DC 0.5 4.2 % 5.3 % Yes
DC–IX DC IX 0.5 10.5 % 13.1 % No
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Figure 3 Stacked plots of the overall traffic demand sums
in the years 2016 and 2021.

of delay-sensitive traffic classes. Based purely on propaga-
tion delay, which is the most prominent contributor in wide
area networks, we first determined which demands could
be served at which delay due to geographical constraints.
Table 3 shows which node pairs can be served with delay
classes guaranteeing 5, 10, 15 and 25 ms.
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Figure 4 Fraction of delay-sensitive demand.

Table 3 Lowest delay class possible between node pairs.

A1 A2 CH DN HS IP KC LA NY SN ST WA
A1 – 5 5 15 10 5 10 25 10 25 25 10
A2 5 – 5 15 10 5 10 25 10 25 25 5
CH 5 5 – 10 10 5 10 25 10 25 25 10
DN 15 15 10 – 10 10 5 15 25 10 10 25
HS 10 10 10 10 – 10 10 15 15 15 25 10
IP 5 5 5 10 10 – 5 25 10 25 25 10

KC 10 10 10 5 10 5 – 15 15 15 15 15
LA 25 25 25 15 15 25 15 – 25 5 10 25
NY 10 10 10 25 15 10 15 25 – 25 25 5
SN 25 25 25 10 15 25 15 5 25 – 10 25
ST 25 25 25 10 25 25 15 10 25 10 – 25
WA 10 5 10 25 10 10 15 25 5 25 25 –

Using these values we created four different sets of dy-
namic traffic matrices. Our demand set for 25 ms requires
all delay-sensitive demands to be in the 25 ms-class. Sub-
sequent sets replace this constraint with the next lower
class where possible meaning that e. g. the 15 ms-set re-
quires all demands to have 15 ms if possible and 25 ms
otherwise. The 5 ms-set requires all demands to be in
the lowest-possible of these four classes, corresponding di-
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Figure 5 Distribution of the propagation delay for the
10 shortest paths between each node pair. The path index
increases from left to right, i. e. the green curve on the left
corresponds to the shortest path.

rectly to the entries in Table 3.
Figure 5 shows a theoretical analysis of the degrees of free-
dom in routing permissible by different delay restrictions.
For a 5 ms delay limit there are only 22 node pairs avail-
able and only the shortest path (green on the left) is able to
keep this limit. For the most lenient limit of 25 ms it can be
observed that almost all node pairs (98.5 %) have at least
one alternate path (purple) which can keep the delay limit,
while some few paths have up to four alternate paths.
To show the difference between static and dynamic traf-
fic we have derived static traffic matrices for each scenario
as well. These were created by determining the maximum
traffic value for each node pair throughout the sequence of
dynamic matrices for the respective scenario. Since our ex-
ample time frame stretches from the year 2016 to 2021 we
chose to use hardware parameters which have just become
commercially viable in 2016 and will still be relevant in
2021. Therefore, we assume our transponders to be oper-
ating at a data rate of 200 Gbps utilizing PDM-8QAM and
router line cards supporting 4 ports of this capacity. At a
transparent reach of about 1800 km [21] these devices can
cover all the single-hop distances in the network except for
the link between Houston and Los Angeles which will re-
quire regeneration.

4.3 Dimensioning and Reconfiguration
We have developed several optimization heuristic ap-
proaches for the dynamic reconfiguration of multi-layer
networks in previous works [22, 23] which can also be ap-
plied in network dimensioning. The objective of these ap-
proaches is to determine a configuration of network hard-
ware resources and corresponding routing in the face of dy-
namically changing traffic demands considering given op-
timization criteria. In the past we had considered energy-
efficiency through deactivation of unneeded hardware and
resource efficiency in terms of installed hardware required
for the given traffic. To demonstrate the effects of hetero-
geneous and dynamic traffic behavior we have conducted
a number of simulation studies based on assumptions in
the previous sections. For this study we have used our
virtual topology-centric optimization heuristic [23] in two

Figure 6 Number of demands exceeding delay limit if
available resources are minimal according to the delay-
unaware optimization heuristic.

versions. One is focused solely on resource optimization
and does not consider any delay requirements and serves as
a baseline for the second version which additionally takes
delay constraints into account. We will evaluate their effec-
tiveness in dimensioning and reconfiguration by the num-
ber of line cards required for the entire network.

5 Simulation Results

Using the delay-unaware heuristic, that optimizes resource
usage only, we determined the hardware requirements for
all 8 scenarios for two modes of network operation. For the
regular static operation we determined resource require-
ments for the static matrices. In the dynamic mode, the
network is reconfigured every hour to use the least amount
of resources for the present matrix in the dynamic traffic
set. In theory, a resource optimization will route traffic on
shortest paths and only divert to longer ones if grooming
of traffic allows to save otherwise underutilized interfaces
on more direct routes. Since routing all traffic on short-
est paths will automatically achieve the least delay possi-
ble, we first ran a resource optimization that is purpose-
fully unaware of the delay constraints to estimate the ef-
fects of grooming. In order to control for statistical effects
we solved each static matrix 10 times. The dynamic matri-
ces were only done once and therefore the corresponding
results should only be considered as an estimate.
Figure 6 shows that for the static case only few of the 132
delay-sensitive traffic demands have not met their delay re-
quirements. The dynamic case using the periodic network
reconfiguration shows a much larger number of excessive
delays for the 2016 scenarios due to the fact that it vastly
reduces the number of active line cards during the hours
of lower traffic load thereby reducing the number of direct
routes and thus increasing the average path length by 6 %
and the maximum path length by 21.3 %. For the 2021
scenarios the average traffic load is much higher which ne-
cessitates using about three times as many line cards. Since
for this case there is a significant load on almost all possible
links, the optimization algorithm finds only few meaning-
ful opportunities to provide grooming of traffic on longer
alternate routes and the results therefore almost match the



Figure 7 Minimal number of installed line cards required
for the 2016 scenarios for different operation modes.

Figure 8 Minimal number of installed line cards required
for the 2021 scenarios for different operation modes.

static case.
We repeated all of the experiments above using the second,
delay-aware version of our optimization heuristic. Since
avoiding delay excursions reduces the potential for groom-
ing traffic onto longer paths, the resource requirements
could be expected to be significantly higher than in the
previous experiments. Figure 7 and Figure 8 show a com-
parison of the lowest number of line cards the algorithms
have found to be required for each scenario. We found
that even the most stringent delay requirements can be ful-
filled by adding at most three additional line cards to the
absolute resource minimum corresponding to a relative in-
crease of at most 3.85 % for 2016 scenarios and 1.18 % for
the 2021 scenarios. Surprisingly, the intuitive correlation
between lowered delay constraints and increased number
of required line cards is not visible in the data shown, al-
though it has been observed in other studies with higher
peak traffic. However, the sample size and numerical dif-
ferences in the present data are too small to draw conclu-
sions on the cause of this effect. On the other hand, the
comparison between static and dynamic cases shows that
the dynamic operation can save at least between 1.3 % and
4.69 % of line cards in the given scenarios. This is due to
the fact that traffic peaks between node pairs do not always
occur simultaneously allowing some line cards to be repur-
posed during network operation where for the static case
two line cards are needed.
Figure 9 and Figure 10 show the results of the dynamic
operation experiments in more detail. For the course of
a simulated time of 24 hours the network configuration is
adjusted every hour to the present traffic situation in order
to deactivate the most number of line cards possible mak-
ing these graphs follow the shape of the traffic graphs in

Figure 9 Number of active line cards required in the
course of the day for the 2016 scenario.

Figure 10 Number of active line cards required in the
course of the day for the 2021 scenario.

Figure 3. This approach can be used in combination with
hardware sleep modes to reduce operational expenditure in
terms of energy cost. For all scenarios the behavior is simi-
lar and the average number of line cards that have to remain
active ranges between 65 % and 68 % of the installed line
cards. During the times of low network load honoring more
demanding delay constraints consistently requires a larger
number of active line cards. For the 2016 case each next
lower delay class requires about 1 % additional resources
compared to the resource-unaware case while the relative
difference in the 2021 case always stays below 1 %.
In summary of these results it can be stated for the given
scenario that while offering increasingly low delay classes
will require additional resources, the amount is relatively
low. Even in the dynamic case the increase in line cards re-
quired to be active in order to avoid missing the delay lim-
its, especially at times of low utilization, has only a small
negative impact considering the observed maximum num-
ber of delay excursions for the baseline case.

6 Conclusion

In this work we have presented requirements for a traffic
generator supporting dynamic demands. We have found
that to our knowledge there is no modeling approach in lit-
erature which provides the necessary layer of abstraction
with the required level of precision. We have suggested a
modeling approach which allows to create traffic scenar-



ios based on population figures, usage profiles and traffic
volume extrapolations readily found in literature. We pre-
sented an application example validating the capabilities
of this approach by creating traffic scenarios matching cur-
rent traffic predictions and demonstrating how they can be
applied to network-level studies on resource dimensioning
and dynamic operation.
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