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Abstract

We propose a machine learning-based approach using a random forest for the fast computation of optimized transport network
routing configurations. An evaluation in a 7-node network shows that our approach achieves competitive results in terms of
solution quality and computation time compared to an exact ILP solution.

1 Introduction

The worldwide network traffic is constantly increasing [1] and
new technologies like 5G will change the dynamic characteris-
tics of this traffic fundamentally. New services emerging from
use cases like enhanced mobile broadband or the connected
car will be spatially and temporally much more volatile than
traffic of today’s network services. Network operators have to
adapt their networks to those new characteristics and traffic
amounts. One component in this network adaption process is
the move to more efficient and flexible traffic routing schemes.
Reconfiguring the traffic routes in the network on a regular
basis allows the network operator to handle peak hours and
low load situations as well as volatile traffic requirements effi-
ciently [2]. The increasing “softwarization” of communication
networks [3, 4] together with more flexible optical transmis-
sion technology [5, 6] allows for a reconfiguration of traffic
routes in short time intervals. To gain benefits from short-term
reconfigurations, the computation of new network configura-
tions needs to be fast, too. An optimal configuration can be
computed using optimization approaches like integer linear
programming. However, since routing optimization problems
are difficult to solve, the required solution times are hard to
estimate and tend to be high. Another drawback of classical
optimization is that it can only hardly benefit from the fact
that traffic situations are repeating over time with only small
variations. In these cases, similar traffic situations have to be
optimized independently although often they lead to similar
network configurations.

To overcome these limitations alternative approaches are
necessary. Machine learning is a promising alternative to tackle
those shortcomings. Machine learning-based approaches typ-
ically consist of a training and a prediction phase. Most of
the computation time has to be invested in the training phase
whereas the predictions are made very quickly. This allows
the deployment in online reconfiguration engines. Furthermore,
machine learning models are able to generalize to some extent,

i.e., once trained with a certain training set they can handle new
and unseen data that is similar to those in the training set as well
without additional retraining.

Different machine learning applications in the field of com-
munication networks have been developed recently. Many
focus on physical layer problems like quality of transmission
(QoT) estimation or non-linearity mitigation, but there are also
various works on network layer topics like traffic prediction,
failure management or flow classification [7]. Furthermore, the
authors of [8] realize path and wavelength selection for an opti-
cal burst switched network using a machine learning approach
while the authors of [9] have developed a machine learning
algorithm for the routing and wavelength assignment (RWA)
problem in optical networks.

In this paper we present a machine learning-based approach
for the computation of transport network configurations. Dur-
ing network operation, the proposed method replaces the clas-
sical optimization solver with a machine learning classifier.
Only during the training phase the solver is used to train the
machine learning model with optimal network configurations
for different traffic matrices. During network operation the
model predicts optimal or near-optimal network configurations
quickly allowing a network operator to trigger reconfigura-
tions in very short time intervals. In contrast to previous works,
we consider a routing problem that takes traffic grooming and
network hardware of the electrical layer into account and mini-
mizes the number of required router line cards in a realistic and
dynamic traffic scenario.

2 Problem Statement

We consider a transport network consisting of a circuit-oriented
optical layer and a packet-oriented electrical layer on top which
could be realized by an IP-over-DWDM architecture (Fig. 1).
We assume that the network is controlled by a software-defined
networking (SDN) controller with global knowledge on all
network state. The physical topology is given as graph G =
(V,E), where V is the set of nodes and E is the set of fibre
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Fig. 1 Transport network architecture example consisting of
packet routers and optical switches. The nodes are connected
through different optical circuits (violet, green, red).

links. Each node consists of an optical switch and a packet
router connected to it. The optical switch could be realized
by a contentionless, directionless and colourless multi-degree
reconfigurable optical add-drop multiplexer (ROADM) [10].
Therefore, arbitrary optical circuits can be established between
any fibre, which connects to another node, and any of the ports
in the router line cards.

Between any two nodes s ∈ V and t ∈ V (s 6= t) there exist
two directed traffic demands hs,t and ht,s which describe the
aggregated data rates that need to be provisioned between the
two nodes. We denote the set of all demands as demand matrix
H. Demands traverse the network on optical circuits and can
be groomed if a circuit has enough capacity to hold multiple
demands. An optical circuit requires one line card port at the
router of its source node and one at the router of its target node.
Intermediate nodes are bypassed, i.e., the circuit is switched in
the ROADM without intermediate termination in the electrical
domain. We require that the length of an optical circuit is within
the transparent reach.

Using an integer linear program (ILP) similar to the one used
for the resource minimization in an earlier publication of ours
[11], we can find an optimal network configuration R, con-
sisting of a set of optical circuits assigned to each demand in
H, such that the amount of required router line cards is mini-
mized. In the following we propose a machine learning-based
approach that replaces the ILP solver during network opera-
tion. It is trained to predict the same optimal configuration R
while using less computation time than the ILP.

3 Solution Approach

In our solution approach we treat the routing problem as a
classification problem in which a machine learning algorithm
assigns a network configuration to a given traffic situation.
Hence, we consider a set of traffic demands H as input and
the corresponding network configuration R as classification
output. This means that one unique configuration defines one
class and configurations with exactly the same circuits belong
to the same class. We employ a supervised learning method-
ology, i.e., we train the classifier with a pre-computed training
set S = {(H1,R1),(H2,R2), . . .} in which we known the optimal
network configuration Ri for each set of traffic demands Hi. We
test the quality of the classifier with a separate test set T . For
the generation of the training set we employ an ILP that selects
an optimal traffic route for each demand out of a pre-computed
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Fig. 2 Logical fibre topology of the 7-node network.

set of candidate paths [11]. A candidate path for a demand from
node s to t is defined by a base path, i.e., a path in the physical
topology G that connects s and t, and a sequence of one or mul-
tiple optical circuits along that base path. An example is given
in Fig. 1 where different candidate paths for a demand from a
to c are shown. Two base paths exist, first the direct path using
fibre link a–c and secondly, the path via node b using the links
a–b and b–c. On the direct base path only a direct optical circuit
from a to c (violet) is possible, resulting in one candidate path.
On the second base path, a direct circuit (green) and a sequence
of two circuits (red) with intermediate termination in node b are
possible, resulting in two candidate paths. In total 3 candidate
paths exist in this example. As stated above, we don’t consider
circuits that exceed the transparent reach.

Due to the detailed routing information in each network con-
figuration the number of classes as well as the output dimension
in this classification problem tend to be very large. Different
works [12, 13] have shown that random forests are a powerful
machine learning approach which outperform other machine
learning algorithms in many situations and in particular in sit-
uations with high-dimensional data [13]. For this reason, and
because the number of parameters that need to be tuned for
this type of algorithm is small, we use a random forest in our
solution approach. As presented in [14], a random forest is an
ensemble of decision trees. Each decision tree is a binary tree
consisting of a simple numerical decision in each inner node
which is evaluated based on the input data. By traversing the
tree a leaf node is reached which assigns its candidate class to
the input data. In a random forest each decision tree is trained
on a random subsample of the training data. The prediction
of the random forest is a combination of the decisions of the
individual decision trees. A prediction is made very quickly
because it requires the evaluation of a fixed number of binary
decisions only.

4 Results

We evaluated our approach in a 7-node network which was
derived from the Abilene topology found in the SNDlib [15].
The logical fibre topology is depicted in Fig. 2. We assumed an
IP-over-DWDM setup utilizing router line cards that can hold
up to 6 tunable ports [16]. Each port transmits at a data rate of
150 Gbps and has a transparent reach of 1800 km. The available
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Fig. 3 Total traffic demand per demand matrix.

traffic data for this topology consist of 48 096 matrices and is
based on actual measurements [15]. In order to obtain a classi-
fier that is not biased towards individual traffic matrices which
appear several times in the original traffic data we removed
all duplicates, which results in 47 232 unique traffic matrices.
Fig. 3 shows the total amount of traffic in each matrix which
has been scaled to an average demand of 50 Gbps per node pair.
We computed optimal network configurations for each traffic
matrix using the ILP that minimizes active router line cards
and used 40 000 data points as training set S and the remaining
7232 data points as test set T . Since the topology consists of
7 nodes a single traffic matrix H contains 42 directed demands
and, therefore, the input dimension of the random forest is 42.
Since one route per demand is selected by the random forest its
output dimension is 42 as well. For the whole dataset of 47 232
demand matrices the ILP found 10 037 unique optimal network
configurations. The implication is that different traffic matrices
map to the same network configuration which in turn allows
the machine learning algorithm to generalize. Since a unique
network configuration defines a class the number of classes the
random forest has to distinguish equals 10 037.

For the described scenario the classifier achieves an accu-
racy, i.e., a proportion of correctly predicted configurations
among the test cases in the test set, of 51.85 %. For the remain-
ing 48.15 % of incorrectly classified test cases at least one
path in the predicted configuration is different from the opti-
mal paths in Ri. Yet, the random forest predicts 84.42 % of
the individual paths in Ri correctly on average. Hence, even
though a predicted configuration as a whole is not optimal,
the majority of paths is still equal to the paths in the optimal
configuration. Consequently, even the test cases that are not
predicted correctly can provide decent network configurations.
To investigate this further, we study the quality of the incorrect
predictions in terms of the required router line cards. The opti-
mal number of required line cards averaged over the test set is
7.83 while the maximum is 48. Fig. 4 depicts a histogram for
the number of additional line cards required for the incorrectly
predicted configurations compared to the ILP optimum. For
4.71 % of the incorrect predictions the random forest approach
does not require any additional router line cards. In the worst
case 7 additional line cards are necessary. Four additional line
cards are sufficient for more than 98 % of the incorrect cases.
Averaged over the whole test set, i.e. correct and incorrect
predictions, 0.99 additional line cards are necessary.
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Fig. 4 Histogram for the number of required additional line
cards for incorrect predictions compared to the ILP optimum.

Using CPLEX 12.8 on one core of a 3.4 GHz machine, the
computation times required for the ILP range from time spans
below one second up to more than a minute depending on the
particular input traffic matrix. This is not much because the net-
work consists of 7 nodes only. However, the computation times
will rise significantly for larger topologies. In contrast, the
prediction time of the random forest is independent of the par-
ticular input traffic matrix and only depends on the tree depth
and the number of trees in the forest. Using the same machine
as for the ILP and the scikit-learn 0.19.2 library [17] for the
implementation of the random forest, the prediction times of
the random forest were consistently below one second.

5 Conclusion

In this paper we have presented a machine learning-based
approach for the computation of transport network configura-
tions. We employ a supervised learning methodology based on
a random forest to replace traditional solution approaches for
the optimization of network configurations like ILPs. The eval-
uation in a 7-node network has shown that the new approach
is able to provide network configurations with only 0.99 addi-
tional line cards on average compared to the ILP optimum. In
51.85 % of the test cases the output of the random forest is
equal to the optimum. Four additional line cards are sufficient
in 98 % of the cases in the whole test set. In contrast to an ILP
solver, the computation times of the random forest approach
are independent of the particular input demand matrix. This
is increasingly important when the network size grows. The
presented approach is a viable alternative to classical solution
methods in the evaluated scenario. With increasing network
sizes, however, the complexity of the classification in terms of
the required amount of training data and time will grow as well.
Future research will have to show whether the approach can
handle these cases as well.
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