
Universität Stuttgart
INSTITUT FÜR

KOMMUNIKATIONSNETZE
UND RECHNERSYSTEME

Prof. Dr.-Ing. Andreas Kirstädter

IKR Simulation Library 4.0

Simulation Example

November 16, 2017

IKR Simulation Library 4.0 User Guide – Simulation Example

Editors ii

Editors

Marc Barisch Christoph Gauger

Marc Necker Jörg Sommer

Joachim Scharf Sebastian Scholz

iii

IKR Simulation Library 4.0 User Guide – Simulation Example

Editors . ii

1 Introduction . 1

2 Queuing Model . 2

2.1 Model description . 2

2.2 Simulation Model. 2

2.3 Steps from Simulation towards results. 3

3 Simulation . 4

3.1 Importing the example in Eclipse . 4

3.1.1 Create a new Eclipse Project . 4

3.1.2 Import the code of the example project . 5

3.1.3 Running the simulation . 7

3.1.4 Exporting the simulation model . 7

3.2 Creating the simulation tree . 8

3.3 Running the simulation . 9

4 Visualization of the simulation results . 12

4.1 First overview . 12

4.2 Value extraction . 13

4.3 Graph Creation. 14

4.3.1 Basic Graph . 14

5 Hints for using the IKR computing infrastructure . 17

6 ACK/NACK Protocol . 18

6.1 Model description . 18

6.2 Possible Extensions . 18

References . 19

iv

IKR Simulation Library 4.0 User Guide – Simulation Example

IKR Simulation Library 4.0 User Guide – Simulation Example

Introduction 1

1 Introduction

This document presents a simple example which demonstrates the execution of a complete per-
formance evaluation study, explains all steps from setting up the simulation to designing the
graphs.

Besides a classical queuing model, we also show an example of a simple ACK/NACK protocol
implementation in Section 6.

IKR Simulation Library 4.0 User Guide – Simulation Example

Queuing Model 2

2 Queuing Model

2.1 Model description

Fig. 2.1 shows the general model. Packets arrive at an infinite server with negative exponen-
tially distributed interarrival times (mean rate) and a constant packet length L. The infinite
server introduces a constant delay to all packets. The packets are then sent into an unbounded
queue. Following the queue the packets are processed by a phase where the service time
depends linearly on the packet size. After processing packets are fed back into the queue with a
probability of p. With a probability of 1-p they are send towards a second infinite server. After
processing in the infinite server the packets leave the system.

2.2 Simulation Model

The general model of Fig. 2.1 is realized by the components given in Fig. 2.2. A Generator
produces negative exponentially distributed messages of constant length L. These messages
are sent to the link. After the first link follows a node wich processes the packets and sends
them into the second link. Finally, the messages are absorbed by a sink.

Figure 2.1: Model

D

D
...

D

D
...

D

p

1-p

M

λ

Figure 2.2: Simulation Model

Generator

Node

Queue Phase Branch

Link

Infinite

Server

Link

Infinite

Server
Sink

IKR Simulation Library 4.0 User Guide – Simulation Example

Queuing Model 3

2.3 Steps from Simulation towards results

1. First of all the model has to be created. The source code of the simulation model used here
can be found in the provided source archives.
Hint: In the infrastructure of the IKR the example can be found under /net/arch/ikr/simlib-
java/.

2. Import the example in Eclipse and export a runnable Jar file (c.f. Section 3.1)

3. Create the simulation tree (c.f. Section 3.2)

4. Run the simulation (c.f. Section 3.3)

5. Extract results from log files (c.f. Section 4.2)

6. Create graphs (c.f. Section 4.3)

IKR Simulation Library 4.0 User Guide – Simulation Example

Simulation 4

3 Simulation

3.1 Importing the example in Eclipse

We suggest to use an advanced IDE to develop your simulation model. Our standard approach
ist to use Eclipse, but any other IDE is suited as well. In this tutorial we will use the provided
source code, import it into a new Eclipse project, execute it locally and finally export it as run-
nable Jar file.

3.1.1 Create a new Eclipse Project

Open the context menu by right clicking in the package explorer. In the context menu select a
new java project.

In the new dialog enter a name for your new project. The remaining settings can be left to their
defaults.

Figure 3.1: Create new Eclipse project

Figure 3.2: Create new Eclipse project

IKR Simulation Library 4.0 User Guide – Simulation Example

Simulation 5

3.1.2 Import the code of the example project

To import the code of the existing example, select the src folder of the newly created project,
click right and select import.

In the next window select archive file and press next.

Figure 3.3: Import the example code

Figure 3.4: Import the example code

IKR Simulation Library 4.0 User Guide – Simulation Example

Simulation 6

Then select the jar file containing the source files. The remaining settings can be left to their
defaults.

The example requires that the IKR SimLib is included in the Java class path. To add it, right
click on the new project to open the context menu, and select the Properties item.

Figure 3.5: Create new Eclipse Project

Figure 3.6: Configure the build path

IKR Simulation Library 4.0 User Guide – Simulation Example

Simulation 7

Navigate to the Java Build Path configuration and add an external jar.

Finally copy or move the file sim.par provided into the root directory of the newly created
project.

3.1.3 Running the simulation

It is also possible to run the simulation directly within Eclipse. To do so open the class Main
and press the the run button of Eclipse. This will run the simulation with the default settings
and generate the file sim.log in the root directory of the project. Viewing the results is possible
by navigating in the shell to the roor of the project and executing

STResultViewer --rfn sim.log

Alternatively you can open the file directly in a text editor of your choice.

3.1.4 Exporting the simulation model

To use your implemented model, it is convenient to export it as a runnable jar file. This can be
done using the assistant of Eclipse. Select your project and open the context menu with a right
click. Select Export.

Figure 3.7: Configure the build path

Figure 3.8: Export the model

IKR Simulation Library 4.0 User Guide – Simulation Example

Simulation 8

In the next dialog select Runnable Jar file and click on Next.

Then select the launch cofiguration. In our case it is the Main class from the Example project
and provide a location for the new jar file. All other properties can be left to their defaults.

3.2 Creating the simulation tree

To obtain results by simulation, the simulation program has to be executed several times with
different value sets for the parameters of the simulation. The user has to define these parame-
ters. In our example these parameters are the mean IAT (InterArrival Time) and the message
length.

The tool SimTree is used to run the simulation program with varying parameter value sets and
to collect and evaluate the simulation results. SimTree contains a build-in help system. A short
introduction to its operations may be obtained by running the command

Figure 3.9: Export the model

Figure 3.10: Export the model

IKR Simulation Library 4.0 User Guide – Simulation Example

Simulation 9

SimTree intro

SimTree maintains all data for a simulation study in a directory of the filesystem, the so-called
study root. To use SimTree in our example a new subdirectory is created and prepared for
using by SimTree by running the command.

SimTree prepare

Unless otherwise defined, SimTree uses the current subdirectory as study-root.

The parameters to be varied (The customizable simulation parameters) must be defined in a
template parameter file which is located in the subdirectory MetaDeta below the study-root,
i.e. ./MetaData/sim.par.template. The parameters are defined therein by variables
in the format ‘%%Variable%%’. This file is provided together with the simulation example.
The mean IAT of the Generator is defined by ‘%%IAT%%’, the message length by
‘%%MsgLen%%’.

SimTree maintains the parameter value sets in a results tree which is located in the subdirec-
tory ./Results below the study-root. In the next step the results tree is populated with the
simulations parameters and their values obtained during the simulation study. SimTree associ-
ates a type to each simulation parameter. The type could be int, float, string or
boolean. The parameters in our example are both of type int. The values of parameter IAT
and parameter MsgLen shall vary over the values 1, 2, 5, 10, 20 and 50, 100, 150, 200, 250,
300, 350, 400, 450, 500, 700 respectively. Following SimTree command creates the results tree
with both parameters and their respective vealues:

SimTree add --simulation-parameter IAT int 1 2 5 10 15

--simulation-parameter MsgLen int 50 100 150 200 250 300 400 500

Most SimTree options have an abbreviation. Thus, the following command is equivalent to the
previous one:

SimTree add --sp IAT int 1 2 5 10 15 --sp MsgLen int 50 100 150

200 250 300 400 500

3.3 Running the simulation

Now the simulation program has to be called for all combinations of values of both parameters.
This is also done by SimTree. SimTree can execute the simulation program on the local host or
on remote hosts. For now, the local host should be used. For this purpose, run SimTree with
the option simulate and the parameter --local-process-slots which specifies the
number of simulations on the local machine to be run in parallel. Further, pass the name of the
simulation binary with --simulation-binary and the number of batches to run with --
batches. The file run.sh must be executable.

SimTree simulate --local-process-slots 4 --simulation-binary

run.sh --batches 10

Again an abbreviated version of the command is also possible:

SimTree simulate --lps 4 --sb run.sh --b 10

IKR Simulation Library 4.0 User Guide – Simulation Example

Simulation 10

The argument of parameter --simulation-binary (--sb) is the relative path of the
simulation binary or script. If instead of a relative path only a file name is given (as in the
above example), the binary is assumed to be located in the subdirectory ./MetaData of the
study-root. Following bash script is an example of run.sh that starts a java-based simula-
tion program which is archived in a jar file:

#!/bin/sh

java -Xms128M -Xmx1024M -cp /net/arch/ikr/simlib-java/ikr-sim-

lib-example-4.0.0.jar:/net/arch/ikr/simlib-java/ikr-simlib-

4.0.0.jar ikr.simlib.example.queuingModel.Main "$@"

In case you want to use a runnable jar file your created from your own simulation model cre-
ated in step 3.1.4, the file should look like the following:

#!/bin/sh
java -Xms128M -Xmx1024M -jar $(dirname $0)/example.jar "$@"

In this case either provide the absolute path to the jar file or copy it into the MetaData direc-
tory of the studyroot and use the file as provided above.

The options -Xms and -Xmx define the initial and maximum Java heap size respectively.
The argument -cp (classpath) tells the Java Virtual Machine where to look for user-defined
classes, packages and jar archives. ikr.simlib.example.queuingModel.Main defines the
class which includes the main() method to start the application. SimTree passes simulation
options, e.g. number of batches, simulation parameter filename, and final result filename, to
the specified simulation binary. In above example, the bash script appends these options to the
command line of the java program at the place of the argument "$@".

Depending on the complexity of a simulation and number of runs, it may take several minutes
(or even several days for more complex simulations) until the simulation is finished. A partic-
ular results tree including all completed runs and running tasks can be shown running follow-
ing command within the study-root directory of a simulation:

SimTree list

An example output looks as follows:

IKR SimTree Version 2.7.0beta15 (C) 2013 University of Stut-

tgart, IKR

[Notice] Using StudyRoot /u/home/wima/sscholz/tmp/SimlibExam-

ple/.

[Notice] Launching SimTree list

[Config] Using the following merged options

[Config] (AutoDef) --print-format %%indent%%%%content%%

[%%spname%% %%value%%]

[Notice] Simulation method is BatchMeans

[Notice] Result tree contains 2 parameters

[Notice] Parameter IAT, Type int

[Notice] Parameter MsgLen, Type int

[Notice] Meaning of symbols

[Notice] F - - - - - - - Final results exists

[Notice] - E - - - - - - Directory is empty

IKR Simulation Library 4.0 User Guide – Simulation Example

Simulation 11

[Notice] - - L - - - - - Directory is locked

[Notice] - - - B - - - - Default batches exists

[Notice] - - - - S - - - Seeded results exists

[Notice] - - - - - R - - Export results exists

[Notice] - - - - - - X - Seed directories are locked

[Notice] - - - - - - - W Directory is not empty (may contain

foreign files, see Option --force-delete-foreign-files)

[Notice] Content of Study root

F - - B - - - - [IAT 1] [MsgLen 100]

F - - B - - - - [IAT 1] [MsgLen 250]

...

F - - B - - - - [IAT 2] [MsgLen 250]

F - L B - - - - [IAT 2] [MsgLen 300]

- E - - - - - - [IAT 2] [MsgLen 400]

- E - - - - - - [IAT 2] [MsgLen 500]

...

- E - - - - - - [IAT 15] [MsgLen 400]

- E - - - - - - [IAT 15] [MsgLen 500]

[Notice] 40 simulation parameter value sets listed

[Status] 0 Errors, 0 Warnings

Activity and memory consumption can be checked using the top command. The directory
Results contains the simulation results.

Longer simulation studies can be started in a non-interactive way with the nohup command.
To do this instead of calling SimTree simulate ... directly, execute

nohup SimTree simulate ... &

IKR Simulation Library 4.0 User Guide – Simulation Example

Visualization of the simulation results 12

4 Visualization of the simulation results

When all simulation runs are completed SimTree writes the results in log files (default
FinalResults.log.bz2). Following tools can be used for the visul representation of
simulation results:

• xmgrace: A tool for drawing graphics from values in ascii files which contain the values in
a tabular style. xmgrace and the according documentation is available at [2] . Additional
documentation for xmgrace is available by man pages (e.g. type man xmgrace on the
shell command line).

• Matlab: A tool with a numerical computing environment and its own programming lan-
guage. Matlab’s toolbox plottools supports also drawing graphics from different for-
mats such as ascii and XML files. The Matlab Getting Started Guide is available at [3] .

The objective of this example is to draw a diagram containing the transfer time as a function of
the message length with respect to the service time. A further parameter is the interarrival time
which yields a set of lines in each diagram.

The previously mentioned log files include the raw results. These files need first be processed
in order to extract the data in a tool compatible format.

4.1 First overview

To get a first overview you can use the integrated graphical user interface of SimTree. To
start the graphical user interface execute

SimTree gui

in the simulation directory.

The simulation results can be shown by clicking on "View Final Results".

Figure 4.1: SimTree gui

IKR Simulation Library 4.0 User Guide – Simulation Example

Visualization of the simulation results 13

4.2 Value extraction

The first line in the diagram we are going to draw within the scope of this example only con-
siders simulation runs with an IAT of 10. The results of these runs can be found in the subdi-
rectory Study_Root/Results/ParaI__IAT__10. All simulation results need to be
extracted and saved in a format compatible with the input format of graph-creating tools like
xmgrace and Matlab. This is done by executing following SimTree command within the study-
root directory:

SimTree eval --simulation-parameter IAT 10 --column-definition

0 sp MsgLen --column-definition 1 rp "FeedbackModel:Transmis-

sionTimeMeter:mean" --column-definition 2 rp "Feedback-

Model:TransmissionTimeMeter:cintmean" > data10.dat

Alternatively you can use the following abbreviated version of the command

SimTree eval --sp IAT 10 --cd 0 sp MsgLen --cd 1 rp "Feedback-

Model:TransmissionTimeMeter:mean" --cd 2 rp 2 rp "Feedback-

Model:TransmissionTimeMeter:cintmean" > data10.dat

The option eval allows the evaluation of simulation results by creating tables. Each column
of this table has to be specified by the parameter --column-definition. In addition,
each column has a number, a type and an additional argument which defines what appears in
this column. Column numbers starts from 0, are consecutive and do not include spaces. The
type may be either a simulation-parameter or a result-path. The simulation-parameter and
result-path types are abbreviated with sp and rp respectively. The third argument depends on

Figure 4.2: Show Final Results in SimTree gui

IKR Simulation Library 4.0 User Guide – Simulation Example

Visualization of the simulation results 14

the column type: in case of a simulation-parameter it is the name of the simulation parameter
and in case of a result-path it is the hierarchy path of the SimNodes (i.e. Feedback-
Model:TransmissionTimeMeter:TransferTime:mean is constructed by the headings of the
<ResultNode> tags from FinalResults.log.bz2 and thus represents the hierarchical
structure). For futher options use:

SimTree eval --help

4.3 Graph Creation

4.3.1 Basic Graph

Invoke xmgrace and Import the data file data10.dat via the menu “Data->Import-

>Ascii”. Using the file extension dat is expected by xmgrace. Fig. 4.3 shows the import dialog

of xmgrace. Of utmost importance is the field set type. It describes the type of input data. The
format XYDY complies with an input file with three columns the first one of which includes

Figure 4.3: Import of the date file to xmgrace

IKR Simulation Library 4.0 User Guide – Simulation Example

Visualization of the simulation results 15

values for the x-axis, the second one for the y-axis and the third column contains the error bar.
The error bar characterizes the variation of the y value and shows how accurate the value is. In
general a longer simulation results in smaller error bars.
It is also possible to determine the diagram type in the .dat file itself by inserting @type
xydy in the first line.

The result of importing file data10.dat to xmgrace is shown in Fig. 4.4

Repeat the steps of section 4.1 (i.e. run SimTree eval ...) for the remaining interarrival
times (i.e. IAT = 1, 2, 5 and 20). This time turn the option Autoscale on read to None (for all
four imports) to avoid an inconvenient scale modification. Finally, Fig. 4.5 shows the result.

What can be clearly seen in Fig. 4.5 is the constant delay of 20s introduced by the two infinite
servers.

Figure 4.4: Result of the first import

0 100 200 300 400 500
Message Length [DU]

20

22

24

26

28

30

32

34

36

38

40

M
e

a
n

 T
ra

n
s
fe

r
T

im
e

 [
s
]

IKR Simulation Library 4.0 User Guide – Simulation Example

Visualization of the simulation results 16

Figure 4.5: All curves

0 100 200 300 400 500
Message Length [DU]

20

22

24

26

28

30

32

34

36

38

40

M
e

a
n

 T
ra

n
s
fe

r
T

im
e

 [
s
]

IAT = 10 s
IAT = 1 s
IAT = 2 s
IAT = 5 s
IAT = 15 s

IKR Simulation Library 4.0 User Guide – Simulation Example

Hints for using the IKR computing infrastructure 17

5 Hints for using the IKR computing infrastructure

If you perform simulation in the IKR, you can make use of the provided computing infrastruc-
ture, which consists of several powerful computing nodes. Besides that also a job scheduler
exists, that automatically assigns simulation jobs on the available nodes. To make use of the
infrastructure you have first to enable communication with the job scheduler by editing the
configuration file of SimTree. This file is called simtree.properties and is located in
the MetaData directory of your studyroot. Open this file and search for the following line and
set the parameter to true:

enable the cooperation with the SimTree Global Scheduler

st.b.enable_global_scheduler_cooperation.1 = false

Instead of running the SimTree simulate locally, you have first to connect to one of the avail-
able computing nodes via ssh, e.g. ssh cnode01. The tool cnodestate provides an over-
view of the computing nodes and their utilization.

After connecting to a cnode, run the simulation using the following command:

SimTree simulate --gps --sb run.sh --b 10

The parameter --gps (--global processing slots) tells SimTree to request slots from the job
scheduler. By default the slot request includes one CPU core and reserves 5GB of memory on
the computing node. If you have other requirements, e.g. if you used the java parameter -Xmx
to increase the heap size, you can start the simulation with the following command:

SimTree simulate --gps --sb run.sh --b 10 --pr cores=2 mem=8G

This will request 2 CPU cores and 8GB of memory.

For longer simulations use either the nohup or screen commands

IKR Simulation Library 4.0 User Guide – Simulation Example

ACK/NACK Protocol 18

6 ACK/NACK Protocol

In this section, we show how a simple network protocol can be implemented. When executing
the model, make sure that the correct parameter file is used (sim-ackNack.par). The parameter
file can be specifed with the command line parameter "-p sim-ackNack.par".

6.1 Model description

The purpose of the model is to measure the one way delay of packets betwenn generator and
sink. The packets are transmitted by the sender using the ACK/NACK protocol. The receiver
tries to decode the packets. If this is possible, the packet is forwarded to the sink and an ACK
is sent back to the sender. If decoding is not successful a NACK is sent to the sender. In this
case the sender has to repeat the previously sent packet, otherwise the next packet may be
transmitted. For simplicity we assume that no packets are lost completely and only the forward
packets are disturbed. ACK or NACK messages are always received correctly.

Fig. 6.1 shows all components of the model.

6.2 Possible Extensions

• Implement the behavior of the Sender using a real state machine

• Change the generator, such that the packet size is variable

• Add a sequence number in the packets generated by the generator
Hints:

- Derive a new class from the class Message

- Create a MessageFactory and pass it to the generator

• Include a time-out to allow complete losses of packets

Generator Sink

Link

Link

Sender Receiver

Figure 6.1: Model

IKR Simulation Library 4.0 User Guide – Simulation Example

References 19

References

[1] P. J. KÜHN, A. KIRSTÄDTER, “Performance Modelling and Simulation,” Scriptum of the
lecture, IKR, University of Stuttgart, Edition 2012.

[2] http://plasma-gate.weizmann.ac.il/Grace/

[3] http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/getstart.pdf

	1 Introduction
	2 Queuing Model
	2.1 Model description
	2.2 Simulation Model
	2.3 Steps from Simulation towards results

	3 Simulation
	3.1 Importing the example in Eclipse
	3.1.1 Create a new Eclipse Project
	3.1.2 Import the code of the example project
	3.1.3 Running the simulation
	3.1.4 Exporting the simulation model

	3.2 Creating the simulation tree
	3.3 Running the simulation

	4 Visualization of the simulation results
	4.1 First overview
	4.2 Value extraction
	4.3 Graph Creation
	4.3.1 Basic Graph

	5 Hints for using the IKR computing infrastructure
	6 ACK/NACK Protocol
	6.1 Model description
	6.2 Possible Extensions

	References

